Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,21 +7,72 @@ Original file is located at
|
|
7 |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
|
8 |
"""
|
9 |
|
10 |
-
import streamlit as st
|
11 |
import gradio as gr
|
12 |
import torch as th
|
13 |
|
14 |
from composable_diffusion.download import download_model
|
15 |
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
|
16 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
17 |
-
from composable_diffusion.composable_stable_diffusion.pipeline_composable_stable_diffusion import
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
has_cuda = th.cuda.is_available()
|
24 |
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# init stable diffusion model
|
27 |
pipe = ComposableStableDiffusionPipeline.from_pretrained(
|
@@ -61,6 +112,245 @@ clevr_model.to(device)
|
|
61 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
62 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def compose_clevr_objects(prompt, weights, steps):
|
66 |
weights = [float(x.strip()) for x in weights.split('|')]
|
@@ -123,7 +413,7 @@ def stable_diffusion_compose(prompt, steps, weights, seed):
|
|
123 |
return image
|
124 |
|
125 |
|
126 |
-
def
|
127 |
try:
|
128 |
with th.no_grad():
|
129 |
if version == 'Stable_Diffusion_1v_4':
|
@@ -132,35 +422,113 @@ def compose(prompt, weights, version, steps, seed):
|
|
132 |
else:
|
133 |
return compose_clevr_objects(prompt, weights, steps)
|
134 |
except Exception as e:
|
135 |
-
print(e)
|
136 |
return None
|
137 |
|
|
|
138 |
examples_1 = "A castle in a forest | grainy, fog"
|
139 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
140 |
examples_5 = 'a white church | lightning in the background'
|
141 |
examples_6 = 'mystical trees | A dark magical pond | dark'
|
142 |
examples_7 = 'A lake | A mountain | Cherry Blossoms next to the lake'
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
150 |
]
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
|
8 |
"""
|
9 |
|
|
|
10 |
import gradio as gr
|
11 |
import torch as th
|
12 |
|
13 |
from composable_diffusion.download import download_model
|
14 |
from composable_diffusion.model_creation import create_model_and_diffusion as create_model_and_diffusion_for_clevr
|
15 |
from composable_diffusion.model_creation import model_and_diffusion_defaults as model_and_diffusion_defaults_for_clevr
|
16 |
+
from composable_diffusion.composable_stable_diffusion.pipeline_composable_stable_diffusion import \
|
17 |
+
ComposableStableDiffusionPipeline
|
18 |
|
19 |
+
import os
|
20 |
+
import shutil
|
21 |
+
import time
|
22 |
+
import glob
|
23 |
+
import numpy as np
|
24 |
+
import open3d as o3d
|
25 |
+
import open3d.visualization.rendering as rendering
|
26 |
+
|
27 |
+
from PIL import Image
|
28 |
+
from tqdm.auto import tqdm
|
29 |
+
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
|
30 |
+
from point_e.diffusion.sampler import PointCloudSampler
|
31 |
+
from point_e.models.download import load_checkpoint
|
32 |
+
from point_e.models.configs import MODEL_CONFIGS, model_from_config
|
33 |
+
from point_e.util.pc_to_mesh import marching_cubes_mesh
|
34 |
|
35 |
has_cuda = th.cuda.is_available()
|
36 |
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
|
37 |
+
print(has_cuda)
|
38 |
+
|
39 |
+
# init stable diffusion model
|
40 |
+
pipe = ComposableStableDiffusionPipeline.from_pretrained(
|
41 |
+
"CompVis/stable-diffusion-v1-4",
|
42 |
+
).to(device)
|
43 |
+
|
44 |
+
pipe.safety_checker = None
|
45 |
+
|
46 |
+
# create model for CLEVR Objects
|
47 |
+
clevr_options = model_and_diffusion_defaults_for_clevr()
|
48 |
+
|
49 |
+
flags = {
|
50 |
+
"image_size": 128,
|
51 |
+
"num_channels": 192,
|
52 |
+
"num_res_blocks": 2,
|
53 |
+
"learn_sigma": True,
|
54 |
+
"use_scale_shift_norm": False,
|
55 |
+
"raw_unet": True,
|
56 |
+
"noise_schedule": "squaredcos_cap_v2",
|
57 |
+
"rescale_learned_sigmas": False,
|
58 |
+
"rescale_timesteps": False,
|
59 |
+
"num_classes": '2',
|
60 |
+
"dataset": "clevr_pos",
|
61 |
+
"use_fp16": has_cuda,
|
62 |
+
"timestep_respacing": '100'
|
63 |
+
}
|
64 |
+
|
65 |
+
for key, val in flags.items():
|
66 |
+
clevr_options[key] = val
|
67 |
+
|
68 |
+
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
69 |
+
clevr_model.eval()
|
70 |
+
if has_cuda:
|
71 |
+
clevr_model.convert_to_fp16()
|
72 |
+
|
73 |
+
clevr_model.to(device)
|
74 |
+
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
75 |
+
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
|
76 |
|
77 |
# init stable diffusion model
|
78 |
pipe = ComposableStableDiffusionPipeline.from_pretrained(
|
|
|
112 |
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
113 |
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
114 |
|
115 |
+
print('creating base model...')
|
116 |
+
base_name = 'base40M-textvec'
|
117 |
+
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
|
118 |
+
base_model.eval()
|
119 |
+
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
|
120 |
+
|
121 |
+
print('creating upsample model...')
|
122 |
+
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
123 |
+
upsampler_model.eval()
|
124 |
+
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
|
125 |
+
|
126 |
+
print('downloading base checkpoint...')
|
127 |
+
base_model.load_state_dict(load_checkpoint(base_name, device))
|
128 |
+
|
129 |
+
print('downloading upsampler checkpoint...')
|
130 |
+
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
131 |
+
|
132 |
+
print('creating SDF model...')
|
133 |
+
name = 'sdf'
|
134 |
+
model = model_from_config(MODEL_CONFIGS[name], device)
|
135 |
+
model.eval()
|
136 |
+
|
137 |
+
print('loading SDF model...')
|
138 |
+
model.load_state_dict(load_checkpoint(name, device))
|
139 |
+
|
140 |
+
|
141 |
+
def compose_pointe(prompt, weights):
|
142 |
+
weight_list = [float(x.strip()) for x in weights.split('|')]
|
143 |
+
sampler = PointCloudSampler(
|
144 |
+
device=device,
|
145 |
+
models=[base_model, upsampler_model],
|
146 |
+
diffusions=[base_diffusion, upsampler_diffusion],
|
147 |
+
num_points=[1024, 4096 - 1024],
|
148 |
+
aux_channels=['R', 'G', 'B'],
|
149 |
+
guidance_scale=[weight_list, 0.0],
|
150 |
+
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
|
151 |
+
)
|
152 |
+
|
153 |
+
def generate_pcd(prompt_list):
|
154 |
+
# Produce a sample from the model.
|
155 |
+
samples = None
|
156 |
+
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=prompt_list))):
|
157 |
+
samples = x
|
158 |
+
return samples
|
159 |
+
|
160 |
+
def generate_fig(samples):
|
161 |
+
pc = sampler.output_to_point_clouds(samples)[0]
|
162 |
+
return pc
|
163 |
+
|
164 |
+
|
165 |
+
# has_cuda = th.cuda.is_available()
|
166 |
+
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
|
167 |
+
|
168 |
+
# init stable diffusion model
|
169 |
+
pipe = ComposableStableDiffusionPipeline.from_pretrained(
|
170 |
+
"CompVis/stable-diffusion-v1-4",
|
171 |
+
).to(device)
|
172 |
+
|
173 |
+
pipe.safety_checker = None
|
174 |
+
|
175 |
+
# create model for CLEVR Objects
|
176 |
+
clevr_options = model_and_diffusion_defaults_for_clevr()
|
177 |
+
|
178 |
+
flags = {
|
179 |
+
"image_size": 128,
|
180 |
+
"num_channels": 192,
|
181 |
+
"num_res_blocks": 2,
|
182 |
+
"learn_sigma": True,
|
183 |
+
"use_scale_shift_norm": False,
|
184 |
+
"raw_unet": True,
|
185 |
+
"noise_schedule": "squaredcos_cap_v2",
|
186 |
+
"rescale_learned_sigmas": False,
|
187 |
+
"rescale_timesteps": False,
|
188 |
+
"num_classes": '2',
|
189 |
+
"dataset": "clevr_pos",
|
190 |
+
"use_fp16": has_cuda,
|
191 |
+
"timestep_respacing": '100'
|
192 |
+
}
|
193 |
+
|
194 |
+
for key, val in flags.items():
|
195 |
+
clevr_options[key] = val
|
196 |
+
|
197 |
+
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
198 |
+
clevr_model.eval()
|
199 |
+
if has_cuda:
|
200 |
+
clevr_model.convert_to_fp16()
|
201 |
+
|
202 |
+
clevr_model.to(device)
|
203 |
+
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
204 |
+
device = th.device('cpu' if not th.cuda.is_available() else 'cuda')
|
205 |
+
|
206 |
+
# init stable diffusion model
|
207 |
+
pipe = ComposableStableDiffusionPipeline.from_pretrained(
|
208 |
+
"CompVis/stable-diffusion-v1-4",
|
209 |
+
).to(device)
|
210 |
+
|
211 |
+
pipe.safety_checker = None
|
212 |
+
|
213 |
+
# create model for CLEVR Objects
|
214 |
+
clevr_options = model_and_diffusion_defaults_for_clevr()
|
215 |
+
|
216 |
+
flags = {
|
217 |
+
"image_size": 128,
|
218 |
+
"num_channels": 192,
|
219 |
+
"num_res_blocks": 2,
|
220 |
+
"learn_sigma": True,
|
221 |
+
"use_scale_shift_norm": False,
|
222 |
+
"raw_unet": True,
|
223 |
+
"noise_schedule": "squaredcos_cap_v2",
|
224 |
+
"rescale_learned_sigmas": False,
|
225 |
+
"rescale_timesteps": False,
|
226 |
+
"num_classes": '2',
|
227 |
+
"dataset": "clevr_pos",
|
228 |
+
"use_fp16": has_cuda,
|
229 |
+
"timestep_respacing": '100'
|
230 |
+
}
|
231 |
+
|
232 |
+
for key, val in flags.items():
|
233 |
+
clevr_options[key] = val
|
234 |
+
|
235 |
+
clevr_model, clevr_diffusion = create_model_and_diffusion_for_clevr(**clevr_options)
|
236 |
+
clevr_model.eval()
|
237 |
+
if has_cuda:
|
238 |
+
clevr_model.convert_to_fp16()
|
239 |
+
|
240 |
+
clevr_model.to(device)
|
241 |
+
clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
|
242 |
+
print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
|
243 |
+
|
244 |
+
print('creating base model...')
|
245 |
+
base_name = 'base40M-textvec'
|
246 |
+
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
|
247 |
+
base_model.eval()
|
248 |
+
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
|
249 |
+
|
250 |
+
print('creating upsample model...')
|
251 |
+
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
252 |
+
upsampler_model.eval()
|
253 |
+
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
|
254 |
+
|
255 |
+
print('downloading base checkpoint...')
|
256 |
+
base_model.load_state_dict(load_checkpoint(base_name, device))
|
257 |
+
|
258 |
+
print('downloading upsampler checkpoint...')
|
259 |
+
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
260 |
+
|
261 |
+
print('creating SDF model...')
|
262 |
+
name = 'sdf'
|
263 |
+
model = model_from_config(MODEL_CONFIGS[name], device)
|
264 |
+
model.eval()
|
265 |
+
|
266 |
+
print('loading SDF model...')
|
267 |
+
model.load_state_dict(load_checkpoint(name, device))
|
268 |
+
|
269 |
+
|
270 |
+
def compose_pointe(prompt, weights, version):
|
271 |
+
weight_list = [float(x.strip()) for x in weights.split('|')]
|
272 |
+
sampler = PointCloudSampler(
|
273 |
+
device=device,
|
274 |
+
models=[base_model, upsampler_model],
|
275 |
+
diffusions=[base_diffusion, upsampler_diffusion],
|
276 |
+
num_points=[1024, 4096 - 1024],
|
277 |
+
aux_channels=['R', 'G', 'B'],
|
278 |
+
guidance_scale=[weight_list, 0.0],
|
279 |
+
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
|
280 |
+
)
|
281 |
+
|
282 |
+
def generate_pcd(prompt_list):
|
283 |
+
# Produce a sample from the model.
|
284 |
+
samples = None
|
285 |
+
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=prompt_list))):
|
286 |
+
samples = x
|
287 |
+
return samples
|
288 |
+
|
289 |
+
def generate_fig(samples):
|
290 |
+
pc = sampler.output_to_point_clouds(samples)[0]
|
291 |
+
return pc
|
292 |
+
|
293 |
+
def generate_mesh(pc):
|
294 |
+
mesh = marching_cubes_mesh(
|
295 |
+
pc=pc,
|
296 |
+
model=model,
|
297 |
+
batch_size=4096,
|
298 |
+
grid_size=128, # increase to 128 for resolution used in evals
|
299 |
+
progress=True,
|
300 |
+
)
|
301 |
+
return mesh
|
302 |
+
|
303 |
+
def generate_video(mesh_path):
|
304 |
+
render = rendering.OffscreenRenderer(640, 480)
|
305 |
+
mesh = o3d.io.read_triangle_mesh(mesh_path)
|
306 |
+
mesh.compute_vertex_normals()
|
307 |
+
|
308 |
+
mat = o3d.visualization.rendering.MaterialRecord()
|
309 |
+
mat.shader = 'defaultLit'
|
310 |
+
|
311 |
+
render.scene.camera.look_at([0, 0, 0], [1, 1, 1], [0, 0, 1])
|
312 |
+
render.scene.add_geometry('mesh', mesh, mat)
|
313 |
+
|
314 |
+
timestr = time.strftime("%Y%m%d-%H%M%S")
|
315 |
+
os.makedirs(timestr, exist_ok=True)
|
316 |
+
|
317 |
+
def update_geometry():
|
318 |
+
render.scene.clear_geometry()
|
319 |
+
render.scene.add_geometry('mesh', mesh, mat)
|
320 |
+
|
321 |
+
def generate_images():
|
322 |
+
for i in range(64):
|
323 |
+
# Rotation
|
324 |
+
R = mesh.get_rotation_matrix_from_xyz((0, 0, np.pi / 32))
|
325 |
+
mesh.rotate(R, center=(0, 0, 0))
|
326 |
+
# Update geometry
|
327 |
+
update_geometry()
|
328 |
+
img = render.render_to_image()
|
329 |
+
o3d.io.write_image(os.path.join(timestr + "/{:05d}.jpg".format(i)), img, quality=100)
|
330 |
+
time.sleep(0.05)
|
331 |
+
|
332 |
+
generate_images()
|
333 |
+
image_list = []
|
334 |
+
for filename in sorted(glob.glob(f'{timestr}/*.jpg')): # assuming gif
|
335 |
+
im = Image.open(filename)
|
336 |
+
image_list.append(im)
|
337 |
+
# remove the folder
|
338 |
+
shutil.rmtree(timestr)
|
339 |
+
return image_list
|
340 |
+
|
341 |
+
prompt_list = [x.strip() for x in prompt.split("|")]
|
342 |
+
pcd = generate_pcd(prompt_list)
|
343 |
+
pc = generate_fig(pcd)
|
344 |
+
mesh = generate_mesh(pc)
|
345 |
+
timestr = time.strftime("%Y%m%d-%H%M%S")
|
346 |
+
mesh_path = os.path.join(f'{timestr}.ply')
|
347 |
+
with open(mesh_path, 'wb') as f:
|
348 |
+
mesh.write_ply(f)
|
349 |
+
image_frames = generate_video(mesh_path)
|
350 |
+
gif_path = os.path.join(f'{timestr}.gif')
|
351 |
+
image_frames[0].save(gif_path, save_all=True, optimizer=False, duration=5, append_images=image_frames[1:], loop=0)
|
352 |
+
return f'{timestr}.gif'
|
353 |
+
|
354 |
|
355 |
def compose_clevr_objects(prompt, weights, steps):
|
356 |
weights = [float(x.strip()) for x in weights.split('|')]
|
|
|
413 |
return image
|
414 |
|
415 |
|
416 |
+
def compose_2D_diffusion(prompt, weights, version, steps, seed):
|
417 |
try:
|
418 |
with th.no_grad():
|
419 |
if version == 'Stable_Diffusion_1v_4':
|
|
|
422 |
else:
|
423 |
return compose_clevr_objects(prompt, weights, steps)
|
424 |
except Exception as e:
|
|
|
425 |
return None
|
426 |
|
427 |
+
|
428 |
examples_1 = "A castle in a forest | grainy, fog"
|
429 |
examples_3 = '0.1, 0.5 | 0.3, 0.5 | 0.5, 0.5 | 0.7, 0.5 | 0.9, 0.5'
|
430 |
examples_5 = 'a white church | lightning in the background'
|
431 |
examples_6 = 'mystical trees | A dark magical pond | dark'
|
432 |
examples_7 = 'A lake | A mountain | Cherry Blossoms next to the lake'
|
433 |
+
|
434 |
+
image_examples = [
|
435 |
+
[examples_6, "7.5 | 7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 8],
|
436 |
+
[examples_6, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 8],
|
437 |
+
[examples_1, "7.5 | -7.5", 'Stable_Diffusion_1v_4', 50, 0],
|
438 |
+
[examples_7, "7.5 | 7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 3],
|
439 |
+
[examples_5, "7.5 | 7.5", 'Stable_Diffusion_1v_4', 50, 0],
|
440 |
+
[examples_3, "7.5 | 7.5 | 7.5 | 7.5 | 7.5", 'CLEVR Objects', 100, 0]
|
441 |
]
|
442 |
|
443 |
+
pointe_examples = [["a cake | a house", "7.5 | 7.5", 'Point-E'],
|
444 |
+
["a green avocado | a chair", "7.5 | 3", 'Point-E'],
|
445 |
+
["a toilet | a chair", "7 | 5", 'Point-E']]
|
446 |
+
|
447 |
+
with gr.Blocks() as demo:
|
448 |
+
gr.Markdown(
|
449 |
+
"""<h1 style="text-align: center;"><b>Composable Diffusion Models (ECCV
|
450 |
+
2022)</b> - <a href="https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion
|
451 |
+
-Models/">Project Page</a></h1>""")
|
452 |
+
gr.Markdown(
|
453 |
+
"""<table style="display: inline-table; table-layout: fixed; width: 100%;">
|
454 |
+
<tr>
|
455 |
+
<td>
|
456 |
+
<figure>
|
457 |
+
<img src="https://media.giphy.com/media/gKfDjdXy0lbYNyROKo/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
|
458 |
+
<figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND</span> "Dark"</figcaption>
|
459 |
+
</figure>
|
460 |
+
</td>
|
461 |
+
<td>
|
462 |
+
<figure>
|
463 |
+
<img src="https://media.giphy.com/media/sf5m1Z5FldemLMatWn/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
|
464 |
+
<figcaption style="color: black; font-size: 15px; text-align: center;">"Mystical trees" <span style="color: red">AND</span> "A magical pond" <span style="color: red">AND NOT</span> "Dark"</figcaption>
|
465 |
+
</figure>
|
466 |
+
</td>
|
467 |
+
<td>
|
468 |
+
<figure>
|
469 |
+
<img src="https://media.giphy.com/media/lTzdW41bFnrD8AYa0K/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
|
470 |
+
<figcaption style="color: black; font-size: 15px; text-align: center;">"A toilet" <span style="color: red">AND</span> "A chair"</figcaption>
|
471 |
+
</figure>
|
472 |
+
</td>
|
473 |
+
<td>
|
474 |
+
<figure>
|
475 |
+
<img src="https://media.giphy.com/media/nFkMh70kzZCwjbRrx5/giphy.gif" style="text-align:center; width:100%; display:block; margin:auto;">
|
476 |
+
<figcaption style="color: black; font-size: 15px; text-align: center;">"A monitor" <span style="color: red">AND</span> "A brown couch"</figcaption>
|
477 |
+
</figure>
|
478 |
+
</td>
|
479 |
+
</tr>
|
480 |
+
</table>
|
481 |
+
"""
|
482 |
+
)
|
483 |
+
gr.Markdown(
|
484 |
+
"""<p style="font-size: 18px;">Compositional visual generation by composing pre-trained diffusion models
|
485 |
+
using compositional operators, <b>AND</b> and <b>NOT</b>.</p>""")
|
486 |
+
gr.Markdown(
|
487 |
+
"""<p style="font-size: 18px;">When composing multiple inputs, please use <b>β|β</b> to separate them </p>""")
|
488 |
+
gr.Markdown(
|
489 |
+
"""<p>( <b>Note</b>: For composing CLEVR objects, we recommend using <b><i>x</i></b> in range <b><i>[0.1,
|
490 |
+
0.9]</i></b> and <b><i>y</i></b> in range <b><i>[0.25, 0.7]</i></b>, since the training dataset labels are in
|
491 |
+
given ranges.)</p><hr>""")
|
492 |
+
with gr.Row():
|
493 |
+
with gr.Column():
|
494 |
+
gr.Markdown(
|
495 |
+
"""<h4>Composing natural language descriptions / objects for 2D image
|
496 |
+
generation</h4>""")
|
497 |
+
with gr.Row():
|
498 |
+
text_input = gr.Textbox(value="mystical trees | A dark magical pond | dark", label="Text to image prompt")
|
499 |
+
weights_input = gr.Textbox(value="7.5 | 7.5 | 7.5", label="Weights")
|
500 |
+
with gr.Row():
|
501 |
+
seed_input = gr.Number(0, label="Seed")
|
502 |
+
steps_input = gr.Slider(10, 200, value=50, label="Steps")
|
503 |
+
with gr.Row():
|
504 |
+
model_input = gr.Radio(
|
505 |
+
['Stable_Diffusion_1v_4', 'CLEVR Objects'], type="value", label='Text to image model',
|
506 |
+
value='Stable_Diffusion_1v_4')
|
507 |
+
image_output = gr.Image()
|
508 |
+
image_button = gr.Button("Generate")
|
509 |
+
img_examples = gr.Examples(
|
510 |
+
examples=image_examples,
|
511 |
+
inputs=[text_input, weights_input, model_input, steps_input, seed_input]
|
512 |
+
)
|
513 |
+
|
514 |
+
with gr.Column():
|
515 |
+
gr.Markdown(
|
516 |
+
"""<h4>Composing natural language descriptions for 3D asset generation</h4>""")
|
517 |
+
with gr.Row():
|
518 |
+
asset_input = gr.Textbox(value="a cake | a house", label="Text to 3D prompt")
|
519 |
+
with gr.Row():
|
520 |
+
asset_weights = gr.Textbox(value="7.5 | 7.5", label="Weights")
|
521 |
+
with gr.Row():
|
522 |
+
asset_model = gr.Radio(['Point-E'], type="value", label='Text to 3D model', value='Point-E')
|
523 |
+
asset_output = gr.Image(label='GIF')
|
524 |
+
asset_button = gr.Button("Generate")
|
525 |
+
asset_examples = gr.Examples(examples=pointe_examples, inputs=[asset_input, asset_weights, asset_model])
|
526 |
+
|
527 |
+
image_button.click(compose_2D_diffusion,
|
528 |
+
inputs=[text_input, weights_input, model_input, steps_input, seed_input],
|
529 |
+
outputs=image_output)
|
530 |
+
asset_button.click(compose_pointe, inputs=[asset_input, asset_weights, asset_model], outputs=asset_output)
|
531 |
+
|
532 |
+
if __name__ == "__main__":
|
533 |
+
demo.queue(max_size=5)
|
534 |
+
demo.launch(debug=True)
|