Shuang59 commited on
Commit
bc31fa8
β€’
1 Parent(s): 38930b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -199,7 +199,6 @@ def compose_language_descriptions(prompt):
199
  return out_img
200
 
201
  # create model for CLEVR Objects
202
- timestep_respacing = 100
203
  clevr_options = model_and_diffusion_defaults_for_clevr()
204
 
205
  flags = {
@@ -215,7 +214,7 @@ flags = {
215
  "num_classes": '2',
216
  "dataset": "clevr_pos",
217
  "use_fp16": has_cuda,
218
- "timestep_respacing": str(timestep_respacing)
219
  }
220
 
221
  for key, val in flags.items():
@@ -228,6 +227,7 @@ if has_cuda:
228
 
229
  clevr_model.to(device)
230
  clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
 
231
 
232
  def compose_clevr_objects(prompt):
233
  print(prompt)
@@ -248,14 +248,13 @@ def compose_clevr_objects(prompt):
248
  half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
249
  eps = th.cat([half_eps] * x_t.size(0), dim=0)
250
  return th.cat([eps, rest], dim=1)
251
-
252
- masks = [True] * (len(coordinates) - 1) + [False]
253
- model_kwargs = dict(
254
- y=th.tensor(coordinates, dtype=th.float, device=device),
255
- masks=th.tensor(masks, dtype=th.bool, device=device)
256
- )
257
 
258
  def sample(coordinates):
 
 
 
 
 
259
  samples = clevr_diffusion.p_sample_loop(
260
  model_fn,
261
  (len(coordinates), 3, options["image_size"], options["image_size"]),
 
199
  return out_img
200
 
201
  # create model for CLEVR Objects
 
202
  clevr_options = model_and_diffusion_defaults_for_clevr()
203
 
204
  flags = {
 
214
  "num_classes": '2',
215
  "dataset": "clevr_pos",
216
  "use_fp16": has_cuda,
217
+ "timestep_respacing": '100'
218
  }
219
 
220
  for key, val in flags.items():
 
227
 
228
  clevr_model.to(device)
229
  clevr_model.load_state_dict(th.load(download_model('clevr_pos'), device))
230
+ print('total clevr_pos parameters', sum(x.numel() for x in clevr_model.parameters()))
231
 
232
  def compose_clevr_objects(prompt):
233
  print(prompt)
 
248
  half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
249
  eps = th.cat([half_eps] * x_t.size(0), dim=0)
250
  return th.cat([eps, rest], dim=1)
 
 
 
 
 
 
251
 
252
  def sample(coordinates):
253
+ masks = [True] * (len(coordinates) - 1) + [False]
254
+ model_kwargs = dict(
255
+ y=th.tensor(coordinates, dtype=th.float, device=device),
256
+ masks=th.tensor(masks, dtype=th.bool, device=device)
257
+ )
258
  samples = clevr_diffusion.p_sample_loop(
259
  model_fn,
260
  (len(coordinates), 3, options["image_size"], options["image_size"]),