Spaces:
Runtime error
Runtime error
ShuangLI59
commited on
Commit
β’
d4fe1e6
1
Parent(s):
2c3dd7c
update
Browse files
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Composable Diffusion
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.12
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Composable Diffusion
|
3 |
+
emoji: π
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.12
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Copy of compose_glide.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/19xx6Nu4FeiGj-TzTUFxBf-15IkeuFx_F
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
from PIL import Image
|
12 |
+
from IPython.display import display
|
13 |
+
import torch as th
|
14 |
+
|
15 |
+
from glide_text2im.download import load_checkpoint
|
16 |
+
from glide_text2im.model_creation import (
|
17 |
+
create_model_and_diffusion,
|
18 |
+
model_and_diffusion_defaults,
|
19 |
+
model_and_diffusion_defaults_upsampler
|
20 |
+
)
|
21 |
+
|
22 |
+
# This notebook supports both CPU and GPU.
|
23 |
+
# On CPU, generating one sample may take on the order of 20 minutes.
|
24 |
+
# On a GPU, it should be under a minute.
|
25 |
+
|
26 |
+
has_cuda = th.cuda.is_available()
|
27 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
28 |
+
|
29 |
+
# Create base model.
|
30 |
+
timestep_respacing = 100 #@param{type: 'number'}
|
31 |
+
options = model_and_diffusion_defaults()
|
32 |
+
options['use_fp16'] = has_cuda
|
33 |
+
options['timestep_respacing'] = str(timestep_respacing) # use 100 diffusion steps for fast sampling
|
34 |
+
model, diffusion = create_model_and_diffusion(**options)
|
35 |
+
model.eval()
|
36 |
+
if has_cuda:
|
37 |
+
model.convert_to_fp16()
|
38 |
+
model.to(device)
|
39 |
+
model.load_state_dict(load_checkpoint('base', device))
|
40 |
+
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
41 |
+
|
42 |
+
# Create upsampler model.
|
43 |
+
options_up = model_and_diffusion_defaults_upsampler()
|
44 |
+
options_up['use_fp16'] = has_cuda
|
45 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
46 |
+
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
47 |
+
model_up.eval()
|
48 |
+
if has_cuda:
|
49 |
+
model_up.convert_to_fp16()
|
50 |
+
model_up.to(device)
|
51 |
+
model_up.load_state_dict(load_checkpoint('upsample', device))
|
52 |
+
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
53 |
+
|
54 |
+
def show_images(batch: th.Tensor):
|
55 |
+
""" Display a batch of images inline. """
|
56 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
57 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
58 |
+
display(Image.fromarray(reshaped.numpy()))
|
59 |
+
|
60 |
+
def compose_language_descriptions(prompt):
|
61 |
+
#@markdown `prompt`: when composing multiple sentences, using `|` as the delimiter.
|
62 |
+
prompts = [x.strip() for x in prompt.split('|')]
|
63 |
+
|
64 |
+
batch_size = 1
|
65 |
+
guidance_scale = 10 #@param{type: 'number'}
|
66 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
67 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
68 |
+
upsample_temp = 0.980 #@param{type: 'number'}
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
masks = [True] * len(prompts) + [False]
|
73 |
+
# coefficients = th.tensor([0.5, 0.5], device=device).reshape(-1, 1, 1, 1)
|
74 |
+
masks = th.tensor(masks, dtype=th.bool, device=device)
|
75 |
+
# sampling function
|
76 |
+
def model_fn(x_t, ts, **kwargs):
|
77 |
+
half = x_t[:1]
|
78 |
+
combined = th.cat([half] * x_t.size(0), dim=0)
|
79 |
+
model_out = model(combined, ts, **kwargs)
|
80 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
81 |
+
cond_eps = eps[masks].mean(dim=0, keepdim=True)
|
82 |
+
# cond_eps = (coefficients * eps[masks]).sum(dim=0)[None]
|
83 |
+
uncond_eps = eps[~masks].mean(dim=0, keepdim=True)
|
84 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
85 |
+
eps = th.cat([half_eps] * x_t.size(0), dim=0)
|
86 |
+
return th.cat([eps, rest], dim=1)
|
87 |
+
|
88 |
+
|
89 |
+
##############################
|
90 |
+
# Sample from the base model #
|
91 |
+
##############################
|
92 |
+
|
93 |
+
# Create the text tokens to feed to the model.
|
94 |
+
def sample_64(prompts):
|
95 |
+
tokens_list = [model.tokenizer.encode(prompt) for prompt in prompts]
|
96 |
+
outputs = [model.tokenizer.padded_tokens_and_mask(
|
97 |
+
tokens, options['text_ctx']
|
98 |
+
) for tokens in tokens_list]
|
99 |
+
|
100 |
+
cond_tokens, cond_masks = zip(*outputs)
|
101 |
+
cond_tokens, cond_masks = list(cond_tokens), list(cond_masks)
|
102 |
+
|
103 |
+
full_batch_size = batch_size * (len(prompts) + 1)
|
104 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
105 |
+
[], options['text_ctx']
|
106 |
+
)
|
107 |
+
|
108 |
+
# Pack the tokens together into model kwargs.
|
109 |
+
model_kwargs = dict(
|
110 |
+
tokens=th.tensor(
|
111 |
+
cond_tokens + [uncond_tokens], device=device
|
112 |
+
),
|
113 |
+
mask=th.tensor(
|
114 |
+
cond_masks + [uncond_mask],
|
115 |
+
dtype=th.bool,
|
116 |
+
device=device,
|
117 |
+
),
|
118 |
+
)
|
119 |
+
|
120 |
+
# Sample from the base model.
|
121 |
+
model.del_cache()
|
122 |
+
samples = diffusion.p_sample_loop(
|
123 |
+
model_fn,
|
124 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
125 |
+
device=device,
|
126 |
+
clip_denoised=True,
|
127 |
+
progress=True,
|
128 |
+
model_kwargs=model_kwargs,
|
129 |
+
cond_fn=None,
|
130 |
+
)[:batch_size]
|
131 |
+
model.del_cache()
|
132 |
+
|
133 |
+
# Show the output
|
134 |
+
return samples
|
135 |
+
|
136 |
+
|
137 |
+
##############################
|
138 |
+
# Upsample the 64x64 samples #
|
139 |
+
##############################
|
140 |
+
|
141 |
+
def upsampling_256(prompts, samples):
|
142 |
+
tokens = model_up.tokenizer.encode("".join(prompts))
|
143 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
144 |
+
tokens, options_up['text_ctx']
|
145 |
+
)
|
146 |
+
|
147 |
+
# Create the model conditioning dict.
|
148 |
+
model_kwargs = dict(
|
149 |
+
# Low-res image to upsample.
|
150 |
+
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
151 |
+
|
152 |
+
# Text tokens
|
153 |
+
tokens=th.tensor(
|
154 |
+
[tokens] * batch_size, device=device
|
155 |
+
),
|
156 |
+
mask=th.tensor(
|
157 |
+
[mask] * batch_size,
|
158 |
+
dtype=th.bool,
|
159 |
+
device=device,
|
160 |
+
),
|
161 |
+
)
|
162 |
+
|
163 |
+
# Sample from the base model.
|
164 |
+
model_up.del_cache()
|
165 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
166 |
+
up_samples = diffusion_up.ddim_sample_loop(
|
167 |
+
model_up,
|
168 |
+
up_shape,
|
169 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
170 |
+
device=device,
|
171 |
+
clip_denoised=True,
|
172 |
+
progress=True,
|
173 |
+
model_kwargs=model_kwargs,
|
174 |
+
cond_fn=None,
|
175 |
+
)[:batch_size]
|
176 |
+
model_up.del_cache()
|
177 |
+
|
178 |
+
# Show the output
|
179 |
+
return up_samples
|
180 |
+
|
181 |
+
|
182 |
+
# sampling 64x64 images
|
183 |
+
samples = sample_64(prompts)
|
184 |
+
# show_images(samples)
|
185 |
+
|
186 |
+
# upsample from 64x64 to 256x256
|
187 |
+
upsamples = upsampling_256(prompts, samples)
|
188 |
+
# show_images(upsamples)
|
189 |
+
|
190 |
+
out_img = upsamples[0].permute(1,2,0)
|
191 |
+
out_img = (out_img+1)/2
|
192 |
+
out_img = np.array(out_img.data.to('cpu'))
|
193 |
+
return out_img
|
194 |
+
|
195 |
+
# prompt = "a camel | a forest" #@param{type: 'string'}
|
196 |
+
# out_img = compose_language_descriptions(prompt)
|
197 |
+
|
198 |
+
import gradio as gr
|
199 |
+
gr.Interface(fn=compose_language_descriptions, inputs='text', outputs='image').launch();
|
200 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
git+https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
|
2 |
+
git+https://github.com/openai/glide-text2im
|
setup.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup
|
2 |
+
|
3 |
+
setup(
|
4 |
+
name="composable-diffusion",
|
5 |
+
packages=[
|
6 |
+
"composable_diffusion",
|
7 |
+
"composable_diffusion.clip",
|
8 |
+
"composable_diffusion.tokenizer",
|
9 |
+
],
|
10 |
+
package_data={
|
11 |
+
"composable_diffusion.tokenizer": [
|
12 |
+
"bpe_simple_vocab_16e6.txt.gz",
|
13 |
+
"encoder.json.gz",
|
14 |
+
"vocab.bpe.gz",
|
15 |
+
],
|
16 |
+
"composable_diffusion.clip": ["config.yaml"],
|
17 |
+
},
|
18 |
+
install_requires=[
|
19 |
+
"Pillow",
|
20 |
+
"attrs",
|
21 |
+
"torch",
|
22 |
+
"filelock",
|
23 |
+
"requests",
|
24 |
+
"tqdm",
|
25 |
+
"ftfy",
|
26 |
+
"regex",
|
27 |
+
],
|
28 |
+
author="nanliu",
|
29 |
+
)
|