Spaces:
Runtime error
Runtime error
import nltk | |
import librosa | |
import torch | |
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer | |
nltk.download("punkt") | |
from transformers import pipeline | |
import scipy.io.wavfile | |
import soundfile as sf | |
from huggingface_hub import HfApi, CommitOperationAdd, CommitOperationDelete | |
model_name = "Shubham09/whisper31filescheck" | |
processor = WhisperProcessor.from_pretrained(model_name,task="transcribe") | |
#tokenizer = WhisperTokenizer.from_pretrained(model_name) | |
model = WhisperForConditionalGeneration.from_pretrained(model_name) | |
def load_data(input_file): | |
#reading the file | |
speech, sample_rate = librosa.load(input_file) | |
#make it 1-D | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
#Resampling the audio at 16KHz | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate,16000) | |
return speech | |
# def write_to_file(input_file): | |
# fs = 16000 | |
# sf.write("my_Audio_file.flac",input_file, fs) | |
# api = HfApi() | |
# operations = [ | |
# CommitOperationAdd(path_in_repo="my_Audio_file.flac", path_or_fileobj="Shubham09/whisper31filescheck/repo/my_Audio_file.flac"), | |
# # CommitOperationAdd(path_in_repo="weights.h5", path_or_fileobj="~/repo/weights-final.h5"), | |
# # CommitOperationDelete(path_in_repo="old-weights.h5"), | |
# # CommitOperationDelete(path_in_repo="logs/"), | |
#scipy.io.wavfile.write("microphone-result.wav") | |
# with open("microphone-results.wav", "wb") as f: | |
# f.write(input_file.get_wav_data()) | |
# import base64 | |
# wav_file = open("temp.wav", "wb") | |
# decode_string = base64.b64decode(input_file) | |
# wav_file.write(decode_string) | |
pipe = pipeline(model="Shubham09/whisper31filescheck") # change to "your-username/the-name-you-picked" | |
def asr_transcript(input_file): | |
#audio = "Shubham09/whisper31filescheck/repo/my_Audio_file.flac" | |
text = pipe(input_file)["text"] | |
return text | |
# speech = load_data(input_file) | |
# #Tokenize | |
# input_features = processor(speech).input_features #, padding="longest" , return_tensors="pt" | |
# #input_values = tokenizer(speech, return_tensors="pt").input_values | |
# #Take logits | |
# logits = model(input_features).logits | |
# #Take argmax | |
# predicted_ids = torch.argmax(logits, dim=-1) | |
# #Get the words from predicted word ids | |
# transcription = processor.batch_decode(predicted_ids) | |
# #Correcting the letter casing | |
# #transcription = correct_casing(transcription.lower()) | |
# return transcription | |
gr.Interface(asr_transcript, | |
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker"), | |
outputs = gr.outputs.Textbox(label="Output Text"), | |
title="ASR using Whisper", | |
description = "This application displays transcribed text for given audio input", | |
examples = [["Actuator.wav"], ["anomalies.wav"]], theme="grass").launch(share=True) | |