File size: 2,210 Bytes
fb2b18f
 
 
 
 
 
 
 
 
f195f02
 
fb2b18f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
import pickle
import requests
import pandas as pd



st.set_page_config(page_title=None, page_icon=None, layout="wide", initial_sidebar_state="auto", menu_items=None)

movies = pickle.load(open("movies_list.pkl",'rb'))
similarity = pickle.load(open("similarity.pkl",'rb'))


def fetch_poster(movie_id):
    url = "https://api.themoviedb.org/3/movie/{}?api_key=8735d1698444eb906584226ecb77307b&language=en-US".format(movie_id)
    data = requests.get(url)
    data = data.json()
    poster_path = data['poster_path']
    full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
    return full_path

def recommend(movie):
    index = movies[movies['title'] == movie].index[0]
    distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1])
    recommended_movie_names = []
    recommended_movie_posters = []
    for i in distances[1:6]:
        # fetch the movie poster
        movie_id = movies.iloc[i[0]].movie_id
        recommended_movie_posters.append(fetch_poster(movie_id))
        recommended_movie_names.append(movies.iloc[i[0]].title)

    return recommended_movie_names,recommended_movie_posters


st.header('Movie Recommendation System (Content Based)')

st.text("A movie recommendation system, or a movie recommender system, is an ML-based approach to filtering or predicting the users' film preferences ")



movie_list = movies['title'].values
selected_movie = st.selectbox(
    "Type or select a movie from the dropdown",
    movie_list
)

if st.button('Show Recommendation'):
    recommended_movie_names,recommended_movie_posters = recommend(selected_movie)
    col1, col2, col3, col4, col5 = st.columns(5)
    with col1:
        st.text(recommended_movie_names[0])
        st.image(recommended_movie_posters[0])
    with col2:
        st.text(recommended_movie_names[1])
        st.image(recommended_movie_posters[1])

    with col3:
        st.text(recommended_movie_names[2])
        st.image(recommended_movie_posters[2])
    with col4:
        st.text(recommended_movie_names[3])
        st.image(recommended_movie_posters[3])
    with col5:
        st.text(recommended_movie_names[4])
        st.image(recommended_movie_posters[4])