DimensionX / rife /warplayer.py
ι™ˆη‘•
Add application file
d061c3e
raw
history blame
1.17 kB
import torch
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
backwarp_tenGrid = {}
def warp(tenInput, tenFlow):
k = (str(tenFlow.device), str(tenFlow.size()))
if k not in backwarp_tenGrid:
tenHorizontal = (
torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device)
.view(1, 1, 1, tenFlow.shape[3])
.expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
)
tenVertical = (
torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device)
.view(1, 1, tenFlow.shape[2], 1)
.expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
)
backwarp_tenGrid[k] = torch.cat([tenHorizontal, tenVertical], 1).to(device)
tenFlow = torch.cat(
[
tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0),
],
1,
)
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
return torch.nn.functional.grid_sample(
input=tenInput, grid=g, mode="bilinear", padding_mode="border", align_corners=True
)