Spaces:
Running
on
Zero
Running
on
Zero
""" | |
THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo. | |
set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt. | |
Usage: | |
OPENAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=your_base_url python app.py | |
""" | |
import spaces | |
import math | |
import os | |
import random | |
import threading | |
import time | |
import os | |
import cv2 | |
import tempfile | |
import imageio_ffmpeg | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers import ( | |
CogVideoXPipeline, | |
CogVideoXDPMScheduler, | |
CogVideoXVideoToVideoPipeline, | |
CogVideoXImageToVideoPipeline, | |
CogVideoXTransformer3DModel, | |
) | |
from diffusers.utils import load_video, load_image | |
from datetime import datetime, timedelta | |
from PIL import Image | |
from transformers import AutoModelForCausalLM, LlamaTokenizer | |
from diffusers.image_processor import VaeImageProcessor | |
from openai import OpenAI | |
import moviepy.editor as mp | |
import utils | |
from rife_model import load_rife_model, rife_inference_with_latents | |
from huggingface_hub import hf_hub_download, snapshot_download | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran") | |
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife") | |
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to(device) | |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained( | |
"THUDM/CogVideoX-5b-I2V", | |
transformer=CogVideoXTransformer3DModel.from_pretrained( | |
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16 | |
), | |
vae=pipe.vae, | |
scheduler=pipe.scheduler, | |
tokenizer=pipe.tokenizer, | |
text_encoder=pipe.text_encoder, | |
torch_dtype=torch.bfloat16, | |
) | |
os.makedirs("checkpoints", exist_ok=True) | |
# Download LoRA weights | |
hf_hub_download( | |
repo_id="wenqsun/DimensionX", | |
filename="orbit_left_lora_weights.safetensors", | |
local_dir="checkpoints" | |
) | |
hf_hub_download( | |
repo_id="wenqsun/DimensionX", | |
filename="orbit_up_lora_weights.safetensors", | |
local_dir="checkpoints" | |
) | |
# pipe.transformer.to(memory_format=torch.channels_last) | |
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
# pipe_image.transformer.to(memory_format=torch.channels_last) | |
# pipe_image.transformer = torch.compile(pipe_image.transformer, mode="max-autotune", fullgraph=True) | |
os.makedirs("./output", exist_ok=True) | |
os.makedirs("./gradio_tmp", exist_ok=True) | |
upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device) | |
frame_interpolation_model = load_rife_model("model_rife") | |
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets. | |
For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive. | |
There are a few rules to follow: | |
You will only ever output a single video description per user request. | |
When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions. | |
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user. | |
Video descriptions must have the same num of words as examples below. Extra words will be ignored. | |
""" | |
def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)): | |
width, height = get_video_dimensions(input_video) | |
if width == 720 and height == 480: | |
processed_video = input_video | |
else: | |
processed_video = center_crop_resize(input_video) | |
return processed_video | |
def get_video_dimensions(input_video_path): | |
reader = imageio_ffmpeg.read_frames(input_video_path) | |
metadata = next(reader) | |
return metadata["size"] | |
def center_crop_resize(input_video_path, target_width=720, target_height=480): | |
cap = cv2.VideoCapture(input_video_path) | |
orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
orig_fps = cap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
width_factor = target_width / orig_width | |
height_factor = target_height / orig_height | |
resize_factor = max(width_factor, height_factor) | |
inter_width = int(orig_width * resize_factor) | |
inter_height = int(orig_height * resize_factor) | |
target_fps = 8 | |
ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1) | |
skip = min(5, ideal_skip) # Cap at 5 | |
while (total_frames / (skip + 1)) < 49 and skip > 0: | |
skip -= 1 | |
processed_frames = [] | |
frame_count = 0 | |
total_read = 0 | |
while frame_count < 49 and total_read < total_frames: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
if total_read % (skip + 1) == 0: | |
resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA) | |
start_x = (inter_width - target_width) // 2 | |
start_y = (inter_height - target_height) // 2 | |
cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width] | |
processed_frames.append(cropped) | |
frame_count += 1 | |
total_read += 1 | |
cap.release() | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file: | |
temp_video_path = temp_file.name | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height)) | |
for frame in processed_frames: | |
out.write(frame) | |
out.release() | |
return temp_video_path | |
def convert_prompt(prompt: str, image_path: str = None, retry_times: int = 3) -> str: | |
# Define model and tokenizer paths | |
MODEL_PATH = "THUDM/cogagent-chat-hf" | |
TOKENIZER_PATH = "lmsys/vicuna-7b-v1.5" | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
torch_type = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 | |
# Initialize model and tokenizer | |
tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_PATH, | |
torch_dtype=torch_type, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
).to(DEVICE).eval() | |
# Conversation template for text-only queries | |
text_only_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:" | |
# Check if image is available | |
if image_path and os.path.isfile(image_path): | |
image = Image.open(image_path).convert('RGB') | |
else: | |
image = None | |
# Initialize history for conversation context | |
history = [] | |
query = prompt.strip() | |
for _ in range(retry_times): | |
if image is None: | |
# Text-only query, format as required by CogAgent | |
query = text_only_template.format(query) | |
input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history, template_version='base') | |
inputs = { | |
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE), | |
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE), | |
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE) | |
} | |
else: | |
# Image-based input with initial query | |
input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history, images=[image]) | |
inputs = { | |
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE), | |
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE), | |
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE), | |
'images': [[input_by_model['images'][0].to(DEVICE).to(torch_type)]] | |
} | |
if 'cross_images' in input_by_model and input_by_model['cross_images']: | |
inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(torch_type)]] | |
# Generation settings | |
gen_kwargs = {"max_length": 2048, "do_sample": False} | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, **gen_kwargs) | |
outputs = outputs[:, inputs['input_ids'].shape[1]:] | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = response.split("</s>")[0].strip() # Clean up response | |
if response: | |
return response # Return the response if generated successfully | |
# Return original prompt if all retries fail | |
return prompt | |
def infer( | |
prompt: str, | |
orbit_type: str, | |
image_input: str, | |
num_inference_steps: int, | |
guidance_scale: float, | |
seed: int = -1, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if seed == -1: | |
seed = random.randint(0, 2**8 - 1) | |
# if video_input is not None: | |
# video = load_video(video_input)[:49] # Limit to 49 frames | |
# video_pt = pipe_video( | |
# video=video, | |
# prompt=prompt, | |
# num_inference_steps=num_inference_steps, | |
# num_videos_per_prompt=1, | |
# strength=video_strenght, | |
# use_dynamic_cfg=True, | |
# output_type="pt", | |
# guidance_scale=guidance_scale, | |
# generator=torch.Generator(device="cpu").manual_seed(seed), | |
# ).frames | |
lora_path = "checkpoints/" | |
weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors" | |
lora_rank = 256 | |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
# Load LoRA weights on CPU | |
pipe_image.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}") | |
pipe_image.fuse_lora(lora_scale=1 / lora_rank) | |
pipe_image = pipe_image.to(device) | |
if image_input is not None: | |
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL | |
image = load_image(image_input) | |
video_pt = pipe_image( | |
image=image, | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
num_videos_per_prompt=1, | |
use_dynamic_cfg=True, | |
output_type="pt", | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device="cpu").manual_seed(seed), | |
).frames | |
else: | |
video_pt = pipe( | |
prompt=prompt, | |
num_videos_per_prompt=1, | |
num_inference_steps=num_inference_steps, | |
num_frames=49, | |
use_dynamic_cfg=True, | |
output_type="pt", | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device="cpu").manual_seed(seed), | |
).frames | |
return (video_pt, seed) | |
def convert_to_gif(video_path): | |
clip = mp.VideoFileClip(video_path) | |
clip = clip.set_fps(8) | |
clip = clip.resize(height=240) | |
gif_path = video_path.replace(".mp4", ".gif") | |
clip.write_gif(gif_path, fps=8) | |
return gif_path | |
def delete_old_files(): | |
while True: | |
now = datetime.now() | |
cutoff = now - timedelta(minutes=10) | |
directories = ["./output", "./gradio_tmp"] | |
for directory in directories: | |
for filename in os.listdir(directory): | |
file_path = os.path.join(directory, filename) | |
if os.path.isfile(file_path): | |
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path)) | |
if file_mtime < cutoff: | |
os.remove(file_path) | |
time.sleep(600) | |
threading.Thread(target=delete_old_files, daemon=True).start() | |
examples_images = [["example_images/beef.png"], ["example_images/candle.png"], ["example_images/person.png"]] | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;"> | |
DimensionX Demo | |
</div> | |
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;"> | |
⚠️ This demo is for academic research and experiential use only. | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(label="Input Image (will be cropped to 720 * 480)") | |
examples_component_images = gr.Examples(examples_images, inputs=[image_in], cache_examples=False) | |
# prompt = gr.Textbox(label="Prompt") | |
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True) | |
# submit_btn = gr.Button("Submit") | |
# with gr.Column(): | |
# with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False): | |
# image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)") | |
# examples_component_images = gr.Examples(examples_images, inputs=[image_in], cache_examples=False) | |
# with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False): | |
# video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)") | |
# strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength") | |
# examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False) | |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5) | |
with gr.Row(): | |
gr.Markdown( | |
"✨Upon pressing the enhanced prompt button, we will use [CogVLM](https://github.com/THUDM/CogVLM) to polish the prompt and overwrite the original one." | |
) | |
enhance_button = gr.Button("✨ Enhance Prompt(Optional but highly recommend)") | |
with gr.Group(): | |
with gr.Column(): | |
with gr.Row(): | |
seed_param = gr.Number( | |
label="Inference Seed (Enter a positive number, -1 for random)", value=-1 | |
) | |
with gr.Row(): | |
enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False) | |
enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False) | |
gr.Markdown( | |
"✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br> The entire process is based on open-source solutions." | |
) | |
generate_button = gr.Button("🎬 Generate Video") | |
with gr.Column(): | |
video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480) | |
with gr.Row(): | |
download_video_button = gr.File(label="📥 Download Video", visible=False) | |
download_gif_button = gr.File(label="📥 Download GIF", visible=False) | |
seed_text = gr.Number(label="Seed Used for Video Generation", visible=False) | |
def generate( | |
prompt, | |
orbit_type, | |
image_input, | |
# video_input, | |
# video_strength, | |
seed_value, | |
scale_status, | |
rife_status, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
latents, seed = infer( | |
prompt, | |
orbit_type, | |
image_input, | |
# video_input, | |
# video_strength, | |
num_inference_steps=50, # NOT Changed | |
guidance_scale=7.0, # NOT Changed | |
seed=seed_value, | |
progress=progress, | |
) | |
if scale_status: | |
latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device) | |
if rife_status: | |
latents = rife_inference_with_latents(frame_interpolation_model, latents) | |
batch_size = latents.shape[0] | |
batch_video_frames = [] | |
for batch_idx in range(batch_size): | |
pt_image = latents[batch_idx] | |
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])]) | |
image_np = VaeImageProcessor.pt_to_numpy(pt_image) | |
image_pil = VaeImageProcessor.numpy_to_pil(image_np) | |
batch_video_frames.append(image_pil) | |
video_path = utils.save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6)) | |
video_update = gr.update(visible=True, value=video_path) | |
gif_path = convert_to_gif(video_path) | |
gif_update = gr.update(visible=True, value=gif_path) | |
seed_update = gr.update(visible=True, value=seed) | |
return video_path, video_update, gif_update, seed_update | |
def enhance_prompt_func(prompt): | |
return convert_prompt(prompt, retry_times=1) | |
generate_button.click( | |
generate, | |
inputs=[prompt, orbit_type, image_in, seed_param, enable_scale, enable_rife], | |
outputs=[video_output, download_video_button, download_gif_button, seed_text], | |
) | |
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt]) | |
# video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input]) | |
if __name__ == "__main__": | |
demo.queue(max_size=15) | |
demo.launch() | |