Spaces:
Running
on
Zero
Running
on
Zero
陈硕
commited on
Commit
•
d061c3e
1
Parent(s):
297746c
Add application file
Browse files- app.py +397 -0
- requirements.txt +19 -0
- rife/IFNet.py +123 -0
- rife/IFNet_2R.py +123 -0
- rife/IFNet_HDv3.py +138 -0
- rife/IFNet_m.py +127 -0
- rife/RIFE.py +95 -0
- rife/RIFE_HDv3.py +86 -0
- rife/__init__.py +0 -0
- rife/__pycache__/IFNet_HDv3.cpython-312.pyc +0 -0
- rife/__pycache__/RIFE_HDv3.cpython-312.pyc +0 -0
- rife/__pycache__/__init__.cpython-312.pyc +0 -0
- rife/__pycache__/loss.cpython-312.pyc +0 -0
- rife/__pycache__/warplayer.cpython-312.pyc +0 -0
- rife/laplacian.py +69 -0
- rife/loss.py +130 -0
- rife/pytorch_msssim/__init__.py +203 -0
- rife/pytorch_msssim/__pycache__/__init__.cpython-312.pyc +0 -0
- rife/refine.py +107 -0
- rife/refine_2R.py +104 -0
- rife/warplayer.py +34 -0
- rife_model.py +184 -0
- utils.py +221 -0
app.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo.
|
3 |
+
set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
OPENAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=your_base_url python app.py
|
7 |
+
"""
|
8 |
+
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
import random
|
12 |
+
import threading
|
13 |
+
import time
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
import tempfile
|
17 |
+
import imageio_ffmpeg
|
18 |
+
import gradio as gr
|
19 |
+
import torch
|
20 |
+
from PIL import Image
|
21 |
+
from diffusers import (
|
22 |
+
CogVideoXPipeline,
|
23 |
+
CogVideoXDPMScheduler,
|
24 |
+
CogVideoXVideoToVideoPipeline,
|
25 |
+
CogVideoXImageToVideoPipeline,
|
26 |
+
CogVideoXTransformer3DModel,
|
27 |
+
)
|
28 |
+
from diffusers.utils import load_video, load_image
|
29 |
+
from datetime import datetime, timedelta
|
30 |
+
|
31 |
+
from diffusers.image_processor import VaeImageProcessor
|
32 |
+
from openai import OpenAI
|
33 |
+
import moviepy.editor as mp
|
34 |
+
import utils
|
35 |
+
from rife_model import load_rife_model, rife_inference_with_latents
|
36 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
37 |
+
|
38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
|
40 |
+
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
41 |
+
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
42 |
+
|
43 |
+
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to(device)
|
44 |
+
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
45 |
+
|
46 |
+
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
47 |
+
"THUDM/CogVideoX-5b-I2V",
|
48 |
+
transformer=CogVideoXTransformer3DModel.from_pretrained(
|
49 |
+
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=torch.bfloat16
|
50 |
+
),
|
51 |
+
vae=pipe.vae,
|
52 |
+
scheduler=pipe.scheduler,
|
53 |
+
tokenizer=pipe.tokenizer,
|
54 |
+
text_encoder=pipe.text_encoder,
|
55 |
+
torch_dtype=torch.bfloat16,
|
56 |
+
)
|
57 |
+
lora_path = "your_lora_path"
|
58 |
+
lora_rank = 256
|
59 |
+
pipe_image.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
|
60 |
+
pipe_image.fuse_lora(lora_scale=1 / lora_rank)
|
61 |
+
pipe_image = pipe_image.to(device)
|
62 |
+
|
63 |
+
|
64 |
+
# pipe.transformer.to(memory_format=torch.channels_last)
|
65 |
+
# pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
66 |
+
# pipe_image.transformer.to(memory_format=torch.channels_last)
|
67 |
+
# pipe_image.transformer = torch.compile(pipe_image.transformer, mode="max-autotune", fullgraph=True)
|
68 |
+
|
69 |
+
os.makedirs("./output", exist_ok=True)
|
70 |
+
os.makedirs("./gradio_tmp", exist_ok=True)
|
71 |
+
|
72 |
+
upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
|
73 |
+
frame_interpolation_model = load_rife_model("model_rife")
|
74 |
+
|
75 |
+
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
|
76 |
+
|
77 |
+
For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
|
78 |
+
There are a few rules to follow:
|
79 |
+
|
80 |
+
You will only ever output a single video description per user request.
|
81 |
+
|
82 |
+
When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
|
83 |
+
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.
|
84 |
+
|
85 |
+
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
|
86 |
+
"""
|
87 |
+
|
88 |
+
|
89 |
+
def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
|
90 |
+
width, height = get_video_dimensions(input_video)
|
91 |
+
|
92 |
+
if width == 720 and height == 480:
|
93 |
+
processed_video = input_video
|
94 |
+
else:
|
95 |
+
processed_video = center_crop_resize(input_video)
|
96 |
+
return processed_video
|
97 |
+
|
98 |
+
|
99 |
+
def get_video_dimensions(input_video_path):
|
100 |
+
reader = imageio_ffmpeg.read_frames(input_video_path)
|
101 |
+
metadata = next(reader)
|
102 |
+
return metadata["size"]
|
103 |
+
|
104 |
+
|
105 |
+
def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
106 |
+
cap = cv2.VideoCapture(input_video_path)
|
107 |
+
|
108 |
+
orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
109 |
+
orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
110 |
+
orig_fps = cap.get(cv2.CAP_PROP_FPS)
|
111 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
112 |
+
|
113 |
+
width_factor = target_width / orig_width
|
114 |
+
height_factor = target_height / orig_height
|
115 |
+
resize_factor = max(width_factor, height_factor)
|
116 |
+
|
117 |
+
inter_width = int(orig_width * resize_factor)
|
118 |
+
inter_height = int(orig_height * resize_factor)
|
119 |
+
|
120 |
+
target_fps = 8
|
121 |
+
ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
|
122 |
+
skip = min(5, ideal_skip) # Cap at 5
|
123 |
+
|
124 |
+
while (total_frames / (skip + 1)) < 49 and skip > 0:
|
125 |
+
skip -= 1
|
126 |
+
|
127 |
+
processed_frames = []
|
128 |
+
frame_count = 0
|
129 |
+
total_read = 0
|
130 |
+
|
131 |
+
while frame_count < 49 and total_read < total_frames:
|
132 |
+
ret, frame = cap.read()
|
133 |
+
if not ret:
|
134 |
+
break
|
135 |
+
|
136 |
+
if total_read % (skip + 1) == 0:
|
137 |
+
resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
|
138 |
+
|
139 |
+
start_x = (inter_width - target_width) // 2
|
140 |
+
start_y = (inter_height - target_height) // 2
|
141 |
+
cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]
|
142 |
+
|
143 |
+
processed_frames.append(cropped)
|
144 |
+
frame_count += 1
|
145 |
+
|
146 |
+
total_read += 1
|
147 |
+
|
148 |
+
cap.release()
|
149 |
+
|
150 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
151 |
+
temp_video_path = temp_file.name
|
152 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
153 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
|
154 |
+
|
155 |
+
for frame in processed_frames:
|
156 |
+
out.write(frame)
|
157 |
+
|
158 |
+
out.release()
|
159 |
+
|
160 |
+
return temp_video_path
|
161 |
+
|
162 |
+
|
163 |
+
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
164 |
+
if not os.environ.get("OPENAI_API_KEY"):
|
165 |
+
return prompt
|
166 |
+
client = OpenAI()
|
167 |
+
text = prompt.strip()
|
168 |
+
|
169 |
+
for i in range(retry_times):
|
170 |
+
response = client.chat.completions.create(
|
171 |
+
messages=[
|
172 |
+
{"role": "system", "content": sys_prompt},
|
173 |
+
{
|
174 |
+
"role": "user",
|
175 |
+
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "a girl is on the beach"',
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"role": "assistant",
|
179 |
+
"content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"role": "user",
|
183 |
+
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "A man jogging on a football field"',
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"role": "assistant",
|
187 |
+
"content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"role": "user",
|
191 |
+
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"role": "assistant",
|
195 |
+
"content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"role": "user",
|
199 |
+
"content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
|
200 |
+
},
|
201 |
+
],
|
202 |
+
model="glm-4-plus",
|
203 |
+
temperature=0.01,
|
204 |
+
top_p=0.7,
|
205 |
+
stream=False,
|
206 |
+
max_tokens=200,
|
207 |
+
)
|
208 |
+
if response.choices:
|
209 |
+
return response.choices[0].message.content
|
210 |
+
return prompt
|
211 |
+
|
212 |
+
|
213 |
+
def infer(
|
214 |
+
prompt: str,
|
215 |
+
image_input: str,
|
216 |
+
num_inference_steps: int,
|
217 |
+
guidance_scale: float,
|
218 |
+
seed: int = -1,
|
219 |
+
progress=gr.Progress(track_tqdm=True),
|
220 |
+
):
|
221 |
+
if seed == -1:
|
222 |
+
seed = random.randint(0, 2**8 - 1)
|
223 |
+
|
224 |
+
# if video_input is not None:
|
225 |
+
# video = load_video(video_input)[:49] # Limit to 49 frames
|
226 |
+
# video_pt = pipe_video(
|
227 |
+
# video=video,
|
228 |
+
# prompt=prompt,
|
229 |
+
# num_inference_steps=num_inference_steps,
|
230 |
+
# num_videos_per_prompt=1,
|
231 |
+
# strength=video_strenght,
|
232 |
+
# use_dynamic_cfg=True,
|
233 |
+
# output_type="pt",
|
234 |
+
# guidance_scale=guidance_scale,
|
235 |
+
# generator=torch.Generator(device="cpu").manual_seed(seed),
|
236 |
+
# ).frames
|
237 |
+
if image_input is not None:
|
238 |
+
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
239 |
+
image = load_image(image_input)
|
240 |
+
video_pt = pipe_image(
|
241 |
+
image=image,
|
242 |
+
prompt=prompt,
|
243 |
+
num_inference_steps=num_inference_steps,
|
244 |
+
num_videos_per_prompt=1,
|
245 |
+
use_dynamic_cfg=True,
|
246 |
+
output_type="pt",
|
247 |
+
guidance_scale=guidance_scale,
|
248 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
249 |
+
).frames
|
250 |
+
else:
|
251 |
+
video_pt = pipe(
|
252 |
+
prompt=prompt,
|
253 |
+
num_videos_per_prompt=1,
|
254 |
+
num_inference_steps=num_inference_steps,
|
255 |
+
num_frames=49,
|
256 |
+
use_dynamic_cfg=True,
|
257 |
+
output_type="pt",
|
258 |
+
guidance_scale=guidance_scale,
|
259 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
260 |
+
).frames
|
261 |
+
|
262 |
+
return (video_pt, seed)
|
263 |
+
|
264 |
+
|
265 |
+
def convert_to_gif(video_path):
|
266 |
+
clip = mp.VideoFileClip(video_path)
|
267 |
+
clip = clip.set_fps(8)
|
268 |
+
clip = clip.resize(height=240)
|
269 |
+
gif_path = video_path.replace(".mp4", ".gif")
|
270 |
+
clip.write_gif(gif_path, fps=8)
|
271 |
+
return gif_path
|
272 |
+
|
273 |
+
|
274 |
+
def delete_old_files():
|
275 |
+
while True:
|
276 |
+
now = datetime.now()
|
277 |
+
cutoff = now - timedelta(minutes=10)
|
278 |
+
directories = ["./output", "./gradio_tmp"]
|
279 |
+
|
280 |
+
for directory in directories:
|
281 |
+
for filename in os.listdir(directory):
|
282 |
+
file_path = os.path.join(directory, filename)
|
283 |
+
if os.path.isfile(file_path):
|
284 |
+
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
|
285 |
+
if file_mtime < cutoff:
|
286 |
+
os.remove(file_path)
|
287 |
+
time.sleep(600)
|
288 |
+
|
289 |
+
|
290 |
+
threading.Thread(target=delete_old_files, daemon=True).start()
|
291 |
+
examples_images = [["example_images/beef.png"], ["example_images/candle.png"], ["example_images/person.png"]]
|
292 |
+
|
293 |
+
with gr.Blocks() as demo:
|
294 |
+
gr.Markdown("""
|
295 |
+
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
|
296 |
+
DimensionX Demo
|
297 |
+
</div>
|
298 |
+
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
|
299 |
+
⚠️ This demo is for academic research and experiential use only.
|
300 |
+
</div>
|
301 |
+
""")
|
302 |
+
with gr.Row():
|
303 |
+
with gr.Column():
|
304 |
+
with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=False):
|
305 |
+
image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)")
|
306 |
+
examples_component_images = gr.Examples(examples_images, inputs=[image_input], cache_examples=False)
|
307 |
+
# with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
|
308 |
+
# video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
|
309 |
+
# strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
|
310 |
+
# examples_component_videos = gr.Examples(examples_videos, inputs=[video_input], cache_examples=False)
|
311 |
+
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
312 |
+
|
313 |
+
with gr.Row():
|
314 |
+
gr.Markdown(
|
315 |
+
"✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one."
|
316 |
+
)
|
317 |
+
enhance_button = gr.Button("✨ Enhance Prompt(Optional)")
|
318 |
+
with gr.Group():
|
319 |
+
with gr.Column():
|
320 |
+
with gr.Row():
|
321 |
+
seed_param = gr.Number(
|
322 |
+
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
|
323 |
+
)
|
324 |
+
with gr.Row():
|
325 |
+
enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
|
326 |
+
enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
|
327 |
+
gr.Markdown(
|
328 |
+
"✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br> The entire process is based on open-source solutions."
|
329 |
+
)
|
330 |
+
|
331 |
+
generate_button = gr.Button("🎬 Generate Video")
|
332 |
+
|
333 |
+
with gr.Column():
|
334 |
+
video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
|
335 |
+
with gr.Row():
|
336 |
+
download_video_button = gr.File(label="📥 Download Video", visible=False)
|
337 |
+
download_gif_button = gr.File(label="📥 Download GIF", visible=False)
|
338 |
+
seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
|
339 |
+
|
340 |
+
def generate(
|
341 |
+
prompt,
|
342 |
+
image_input,
|
343 |
+
# video_input,
|
344 |
+
# video_strength,
|
345 |
+
seed_value,
|
346 |
+
scale_status,
|
347 |
+
rife_status,
|
348 |
+
progress=gr.Progress(track_tqdm=True)
|
349 |
+
):
|
350 |
+
latents, seed = infer(
|
351 |
+
prompt,
|
352 |
+
image_input,
|
353 |
+
# video_input,
|
354 |
+
# video_strength,
|
355 |
+
num_inference_steps=50, # NOT Changed
|
356 |
+
guidance_scale=7.0, # NOT Changed
|
357 |
+
seed=seed_value,
|
358 |
+
progress=progress,
|
359 |
+
)
|
360 |
+
if scale_status:
|
361 |
+
latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device)
|
362 |
+
if rife_status:
|
363 |
+
latents = rife_inference_with_latents(frame_interpolation_model, latents)
|
364 |
+
|
365 |
+
batch_size = latents.shape[0]
|
366 |
+
batch_video_frames = []
|
367 |
+
for batch_idx in range(batch_size):
|
368 |
+
pt_image = latents[batch_idx]
|
369 |
+
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
|
370 |
+
|
371 |
+
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
|
372 |
+
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
|
373 |
+
batch_video_frames.append(image_pil)
|
374 |
+
|
375 |
+
video_path = utils.save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
|
376 |
+
video_update = gr.update(visible=True, value=video_path)
|
377 |
+
gif_path = convert_to_gif(video_path)
|
378 |
+
gif_update = gr.update(visible=True, value=gif_path)
|
379 |
+
seed_update = gr.update(visible=True, value=seed)
|
380 |
+
|
381 |
+
return video_path, video_update, gif_update, seed_update
|
382 |
+
|
383 |
+
def enhance_prompt_func(prompt):
|
384 |
+
return convert_prompt(prompt, retry_times=1)
|
385 |
+
|
386 |
+
generate_button.click(
|
387 |
+
generate,
|
388 |
+
inputs=[prompt, image_input, seed_param, enable_scale, enable_rife],
|
389 |
+
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
390 |
+
)
|
391 |
+
|
392 |
+
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
393 |
+
# video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
|
394 |
+
|
395 |
+
if __name__ == "__main__":
|
396 |
+
demo.queue(max_size=15)
|
397 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces>=0.29.3
|
2 |
+
safetensors>=0.4.5
|
3 |
+
spandrel>=0.4.0
|
4 |
+
tqdm>=4.66.5
|
5 |
+
scikit-video>=1.1.11
|
6 |
+
diffusers
|
7 |
+
transformers>=4.44.0
|
8 |
+
accelerate>=0.34.2
|
9 |
+
opencv-python>=4.10.0.84
|
10 |
+
sentencepiece>=0.2.0
|
11 |
+
numpy==1.26.0
|
12 |
+
torch>=2.4.0
|
13 |
+
torchvision>=0.19.0
|
14 |
+
gradio>=4.44.0
|
15 |
+
imageio>=2.34.2
|
16 |
+
imageio-ffmpeg>=0.5.1
|
17 |
+
openai>=1.45.0
|
18 |
+
moviepy>=1.0.3
|
19 |
+
pillow==9.5.0
|
rife/IFNet.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .refine import *
|
2 |
+
|
3 |
+
|
4 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
5 |
+
return nn.Sequential(
|
6 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
|
7 |
+
nn.PReLU(out_planes),
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
12 |
+
return nn.Sequential(
|
13 |
+
nn.Conv2d(
|
14 |
+
in_planes,
|
15 |
+
out_planes,
|
16 |
+
kernel_size=kernel_size,
|
17 |
+
stride=stride,
|
18 |
+
padding=padding,
|
19 |
+
dilation=dilation,
|
20 |
+
bias=True,
|
21 |
+
),
|
22 |
+
nn.PReLU(out_planes),
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class IFBlock(nn.Module):
|
27 |
+
def __init__(self, in_planes, c=64):
|
28 |
+
super(IFBlock, self).__init__()
|
29 |
+
self.conv0 = nn.Sequential(
|
30 |
+
conv(in_planes, c // 2, 3, 2, 1),
|
31 |
+
conv(c // 2, c, 3, 2, 1),
|
32 |
+
)
|
33 |
+
self.convblock = nn.Sequential(
|
34 |
+
conv(c, c),
|
35 |
+
conv(c, c),
|
36 |
+
conv(c, c),
|
37 |
+
conv(c, c),
|
38 |
+
conv(c, c),
|
39 |
+
conv(c, c),
|
40 |
+
conv(c, c),
|
41 |
+
conv(c, c),
|
42 |
+
)
|
43 |
+
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
|
44 |
+
|
45 |
+
def forward(self, x, flow, scale):
|
46 |
+
if scale != 1:
|
47 |
+
x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
|
48 |
+
if flow != None:
|
49 |
+
flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
|
50 |
+
x = torch.cat((x, flow), 1)
|
51 |
+
x = self.conv0(x)
|
52 |
+
x = self.convblock(x) + x
|
53 |
+
tmp = self.lastconv(x)
|
54 |
+
tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False)
|
55 |
+
flow = tmp[:, :4] * scale * 2
|
56 |
+
mask = tmp[:, 4:5]
|
57 |
+
return flow, mask
|
58 |
+
|
59 |
+
|
60 |
+
class IFNet(nn.Module):
|
61 |
+
def __init__(self):
|
62 |
+
super(IFNet, self).__init__()
|
63 |
+
self.block0 = IFBlock(6, c=240)
|
64 |
+
self.block1 = IFBlock(13 + 4, c=150)
|
65 |
+
self.block2 = IFBlock(13 + 4, c=90)
|
66 |
+
self.block_tea = IFBlock(16 + 4, c=90)
|
67 |
+
self.contextnet = Contextnet()
|
68 |
+
self.unet = Unet()
|
69 |
+
|
70 |
+
def forward(self, x, scale=[4, 2, 1], timestep=0.5):
|
71 |
+
img0 = x[:, :3]
|
72 |
+
img1 = x[:, 3:6]
|
73 |
+
gt = x[:, 6:] # In inference time, gt is None
|
74 |
+
flow_list = []
|
75 |
+
merged = []
|
76 |
+
mask_list = []
|
77 |
+
warped_img0 = img0
|
78 |
+
warped_img1 = img1
|
79 |
+
flow = None
|
80 |
+
loss_distill = 0
|
81 |
+
stu = [self.block0, self.block1, self.block2]
|
82 |
+
for i in range(3):
|
83 |
+
if flow != None:
|
84 |
+
flow_d, mask_d = stu[i](
|
85 |
+
torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
|
86 |
+
)
|
87 |
+
flow = flow + flow_d
|
88 |
+
mask = mask + mask_d
|
89 |
+
else:
|
90 |
+
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
|
91 |
+
mask_list.append(torch.sigmoid(mask))
|
92 |
+
flow_list.append(flow)
|
93 |
+
warped_img0 = warp(img0, flow[:, :2])
|
94 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
95 |
+
merged_student = (warped_img0, warped_img1)
|
96 |
+
merged.append(merged_student)
|
97 |
+
if gt.shape[1] == 3:
|
98 |
+
flow_d, mask_d = self.block_tea(
|
99 |
+
torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
|
100 |
+
)
|
101 |
+
flow_teacher = flow + flow_d
|
102 |
+
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
|
103 |
+
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
|
104 |
+
mask_teacher = torch.sigmoid(mask + mask_d)
|
105 |
+
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
|
106 |
+
else:
|
107 |
+
flow_teacher = None
|
108 |
+
merged_teacher = None
|
109 |
+
for i in range(3):
|
110 |
+
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
111 |
+
if gt.shape[1] == 3:
|
112 |
+
loss_mask = (
|
113 |
+
((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
|
114 |
+
.float()
|
115 |
+
.detach()
|
116 |
+
)
|
117 |
+
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
|
118 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
119 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
120 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
121 |
+
res = tmp[:, :3] * 2 - 1
|
122 |
+
merged[2] = torch.clamp(merged[2] + res, 0, 1)
|
123 |
+
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
|
rife/IFNet_2R.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .refine_2R import *
|
2 |
+
|
3 |
+
|
4 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
5 |
+
return nn.Sequential(
|
6 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
|
7 |
+
nn.PReLU(out_planes),
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
12 |
+
return nn.Sequential(
|
13 |
+
nn.Conv2d(
|
14 |
+
in_planes,
|
15 |
+
out_planes,
|
16 |
+
kernel_size=kernel_size,
|
17 |
+
stride=stride,
|
18 |
+
padding=padding,
|
19 |
+
dilation=dilation,
|
20 |
+
bias=True,
|
21 |
+
),
|
22 |
+
nn.PReLU(out_planes),
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class IFBlock(nn.Module):
|
27 |
+
def __init__(self, in_planes, c=64):
|
28 |
+
super(IFBlock, self).__init__()
|
29 |
+
self.conv0 = nn.Sequential(
|
30 |
+
conv(in_planes, c // 2, 3, 1, 1),
|
31 |
+
conv(c // 2, c, 3, 2, 1),
|
32 |
+
)
|
33 |
+
self.convblock = nn.Sequential(
|
34 |
+
conv(c, c),
|
35 |
+
conv(c, c),
|
36 |
+
conv(c, c),
|
37 |
+
conv(c, c),
|
38 |
+
conv(c, c),
|
39 |
+
conv(c, c),
|
40 |
+
conv(c, c),
|
41 |
+
conv(c, c),
|
42 |
+
)
|
43 |
+
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
|
44 |
+
|
45 |
+
def forward(self, x, flow, scale):
|
46 |
+
if scale != 1:
|
47 |
+
x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
|
48 |
+
if flow != None:
|
49 |
+
flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
|
50 |
+
x = torch.cat((x, flow), 1)
|
51 |
+
x = self.conv0(x)
|
52 |
+
x = self.convblock(x) + x
|
53 |
+
tmp = self.lastconv(x)
|
54 |
+
tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
|
55 |
+
flow = tmp[:, :4] * scale
|
56 |
+
mask = tmp[:, 4:5]
|
57 |
+
return flow, mask
|
58 |
+
|
59 |
+
|
60 |
+
class IFNet(nn.Module):
|
61 |
+
def __init__(self):
|
62 |
+
super(IFNet, self).__init__()
|
63 |
+
self.block0 = IFBlock(6, c=240)
|
64 |
+
self.block1 = IFBlock(13 + 4, c=150)
|
65 |
+
self.block2 = IFBlock(13 + 4, c=90)
|
66 |
+
self.block_tea = IFBlock(16 + 4, c=90)
|
67 |
+
self.contextnet = Contextnet()
|
68 |
+
self.unet = Unet()
|
69 |
+
|
70 |
+
def forward(self, x, scale=[4, 2, 1], timestep=0.5):
|
71 |
+
img0 = x[:, :3]
|
72 |
+
img1 = x[:, 3:6]
|
73 |
+
gt = x[:, 6:] # In inference time, gt is None
|
74 |
+
flow_list = []
|
75 |
+
merged = []
|
76 |
+
mask_list = []
|
77 |
+
warped_img0 = img0
|
78 |
+
warped_img1 = img1
|
79 |
+
flow = None
|
80 |
+
loss_distill = 0
|
81 |
+
stu = [self.block0, self.block1, self.block2]
|
82 |
+
for i in range(3):
|
83 |
+
if flow != None:
|
84 |
+
flow_d, mask_d = stu[i](
|
85 |
+
torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
|
86 |
+
)
|
87 |
+
flow = flow + flow_d
|
88 |
+
mask = mask + mask_d
|
89 |
+
else:
|
90 |
+
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
|
91 |
+
mask_list.append(torch.sigmoid(mask))
|
92 |
+
flow_list.append(flow)
|
93 |
+
warped_img0 = warp(img0, flow[:, :2])
|
94 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
95 |
+
merged_student = (warped_img0, warped_img1)
|
96 |
+
merged.append(merged_student)
|
97 |
+
if gt.shape[1] == 3:
|
98 |
+
flow_d, mask_d = self.block_tea(
|
99 |
+
torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
|
100 |
+
)
|
101 |
+
flow_teacher = flow + flow_d
|
102 |
+
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
|
103 |
+
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
|
104 |
+
mask_teacher = torch.sigmoid(mask + mask_d)
|
105 |
+
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
|
106 |
+
else:
|
107 |
+
flow_teacher = None
|
108 |
+
merged_teacher = None
|
109 |
+
for i in range(3):
|
110 |
+
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
111 |
+
if gt.shape[1] == 3:
|
112 |
+
loss_mask = (
|
113 |
+
((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
|
114 |
+
.float()
|
115 |
+
.detach()
|
116 |
+
)
|
117 |
+
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
|
118 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
119 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
120 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
121 |
+
res = tmp[:, :3] * 2 - 1
|
122 |
+
merged[2] = torch.clamp(merged[2] + res, 0, 1)
|
123 |
+
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
|
rife/IFNet_HDv3.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from .warplayer import warp
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
|
9 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
10 |
+
return nn.Sequential(
|
11 |
+
nn.Conv2d(
|
12 |
+
in_planes,
|
13 |
+
out_planes,
|
14 |
+
kernel_size=kernel_size,
|
15 |
+
stride=stride,
|
16 |
+
padding=padding,
|
17 |
+
dilation=dilation,
|
18 |
+
bias=True,
|
19 |
+
),
|
20 |
+
nn.PReLU(out_planes),
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
25 |
+
return nn.Sequential(
|
26 |
+
nn.Conv2d(
|
27 |
+
in_planes,
|
28 |
+
out_planes,
|
29 |
+
kernel_size=kernel_size,
|
30 |
+
stride=stride,
|
31 |
+
padding=padding,
|
32 |
+
dilation=dilation,
|
33 |
+
bias=False,
|
34 |
+
),
|
35 |
+
nn.BatchNorm2d(out_planes),
|
36 |
+
nn.PReLU(out_planes),
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
class IFBlock(nn.Module):
|
41 |
+
def __init__(self, in_planes, c=64):
|
42 |
+
super(IFBlock, self).__init__()
|
43 |
+
self.conv0 = nn.Sequential(
|
44 |
+
conv(in_planes, c // 2, 3, 2, 1),
|
45 |
+
conv(c // 2, c, 3, 2, 1),
|
46 |
+
)
|
47 |
+
self.convblock0 = nn.Sequential(conv(c, c), conv(c, c))
|
48 |
+
self.convblock1 = nn.Sequential(conv(c, c), conv(c, c))
|
49 |
+
self.convblock2 = nn.Sequential(conv(c, c), conv(c, c))
|
50 |
+
self.convblock3 = nn.Sequential(conv(c, c), conv(c, c))
|
51 |
+
self.conv1 = nn.Sequential(
|
52 |
+
nn.ConvTranspose2d(c, c // 2, 4, 2, 1),
|
53 |
+
nn.PReLU(c // 2),
|
54 |
+
nn.ConvTranspose2d(c // 2, 4, 4, 2, 1),
|
55 |
+
)
|
56 |
+
self.conv2 = nn.Sequential(
|
57 |
+
nn.ConvTranspose2d(c, c // 2, 4, 2, 1),
|
58 |
+
nn.PReLU(c // 2),
|
59 |
+
nn.ConvTranspose2d(c // 2, 1, 4, 2, 1),
|
60 |
+
)
|
61 |
+
|
62 |
+
def forward(self, x, flow, scale=1):
|
63 |
+
x = F.interpolate(
|
64 |
+
x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False
|
65 |
+
)
|
66 |
+
flow = (
|
67 |
+
F.interpolate(
|
68 |
+
flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False
|
69 |
+
)
|
70 |
+
* 1.0
|
71 |
+
/ scale
|
72 |
+
)
|
73 |
+
feat = self.conv0(torch.cat((x, flow), 1))
|
74 |
+
feat = self.convblock0(feat) + feat
|
75 |
+
feat = self.convblock1(feat) + feat
|
76 |
+
feat = self.convblock2(feat) + feat
|
77 |
+
feat = self.convblock3(feat) + feat
|
78 |
+
flow = self.conv1(feat)
|
79 |
+
mask = self.conv2(feat)
|
80 |
+
flow = (
|
81 |
+
F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
82 |
+
* scale
|
83 |
+
)
|
84 |
+
mask = F.interpolate(
|
85 |
+
mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False
|
86 |
+
)
|
87 |
+
return flow, mask
|
88 |
+
|
89 |
+
|
90 |
+
class IFNet(nn.Module):
|
91 |
+
def __init__(self):
|
92 |
+
super(IFNet, self).__init__()
|
93 |
+
self.block0 = IFBlock(7 + 4, c=90)
|
94 |
+
self.block1 = IFBlock(7 + 4, c=90)
|
95 |
+
self.block2 = IFBlock(7 + 4, c=90)
|
96 |
+
self.block_tea = IFBlock(10 + 4, c=90)
|
97 |
+
# self.contextnet = Contextnet()
|
98 |
+
# self.unet = Unet()
|
99 |
+
|
100 |
+
def forward(self, x, scale_list=[4, 2, 1], training=False):
|
101 |
+
if training == False:
|
102 |
+
channel = x.shape[1] // 2
|
103 |
+
img0 = x[:, :channel]
|
104 |
+
img1 = x[:, channel:]
|
105 |
+
flow_list = []
|
106 |
+
merged = []
|
107 |
+
mask_list = []
|
108 |
+
warped_img0 = img0
|
109 |
+
warped_img1 = img1
|
110 |
+
flow = (x[:, :4]).detach() * 0
|
111 |
+
mask = (x[:, :1]).detach() * 0
|
112 |
+
loss_cons = 0
|
113 |
+
block = [self.block0, self.block1, self.block2]
|
114 |
+
for i in range(3):
|
115 |
+
f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i])
|
116 |
+
f1, m1 = block[i](
|
117 |
+
torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1),
|
118 |
+
torch.cat((flow[:, 2:4], flow[:, :2]), 1),
|
119 |
+
scale=scale_list[i],
|
120 |
+
)
|
121 |
+
flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
|
122 |
+
mask = mask + (m0 + (-m1)) / 2
|
123 |
+
mask_list.append(mask)
|
124 |
+
flow_list.append(flow)
|
125 |
+
warped_img0 = warp(img0, flow[:, :2])
|
126 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
127 |
+
merged.append((warped_img0, warped_img1))
|
128 |
+
"""
|
129 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
130 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
131 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
132 |
+
res = tmp[:, 1:4] * 2 - 1
|
133 |
+
"""
|
134 |
+
for i in range(3):
|
135 |
+
mask_list[i] = torch.sigmoid(mask_list[i])
|
136 |
+
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
137 |
+
# merged[i] = torch.clamp(merged[i] + res, 0, 1)
|
138 |
+
return flow_list, mask_list[2], merged
|
rife/IFNet_m.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .refine import *
|
2 |
+
|
3 |
+
|
4 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
5 |
+
return nn.Sequential(
|
6 |
+
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
|
7 |
+
nn.PReLU(out_planes),
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
12 |
+
return nn.Sequential(
|
13 |
+
nn.Conv2d(
|
14 |
+
in_planes,
|
15 |
+
out_planes,
|
16 |
+
kernel_size=kernel_size,
|
17 |
+
stride=stride,
|
18 |
+
padding=padding,
|
19 |
+
dilation=dilation,
|
20 |
+
bias=True,
|
21 |
+
),
|
22 |
+
nn.PReLU(out_planes),
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class IFBlock(nn.Module):
|
27 |
+
def __init__(self, in_planes, c=64):
|
28 |
+
super(IFBlock, self).__init__()
|
29 |
+
self.conv0 = nn.Sequential(
|
30 |
+
conv(in_planes, c // 2, 3, 2, 1),
|
31 |
+
conv(c // 2, c, 3, 2, 1),
|
32 |
+
)
|
33 |
+
self.convblock = nn.Sequential(
|
34 |
+
conv(c, c),
|
35 |
+
conv(c, c),
|
36 |
+
conv(c, c),
|
37 |
+
conv(c, c),
|
38 |
+
conv(c, c),
|
39 |
+
conv(c, c),
|
40 |
+
conv(c, c),
|
41 |
+
conv(c, c),
|
42 |
+
)
|
43 |
+
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
|
44 |
+
|
45 |
+
def forward(self, x, flow, scale):
|
46 |
+
if scale != 1:
|
47 |
+
x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
|
48 |
+
if flow != None:
|
49 |
+
flow = F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False) * 1.0 / scale
|
50 |
+
x = torch.cat((x, flow), 1)
|
51 |
+
x = self.conv0(x)
|
52 |
+
x = self.convblock(x) + x
|
53 |
+
tmp = self.lastconv(x)
|
54 |
+
tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False)
|
55 |
+
flow = tmp[:, :4] * scale * 2
|
56 |
+
mask = tmp[:, 4:5]
|
57 |
+
return flow, mask
|
58 |
+
|
59 |
+
|
60 |
+
class IFNet_m(nn.Module):
|
61 |
+
def __init__(self):
|
62 |
+
super(IFNet_m, self).__init__()
|
63 |
+
self.block0 = IFBlock(6 + 1, c=240)
|
64 |
+
self.block1 = IFBlock(13 + 4 + 1, c=150)
|
65 |
+
self.block2 = IFBlock(13 + 4 + 1, c=90)
|
66 |
+
self.block_tea = IFBlock(16 + 4 + 1, c=90)
|
67 |
+
self.contextnet = Contextnet()
|
68 |
+
self.unet = Unet()
|
69 |
+
|
70 |
+
def forward(self, x, scale=[4, 2, 1], timestep=0.5, returnflow=False):
|
71 |
+
timestep = (x[:, :1].clone() * 0 + 1) * timestep
|
72 |
+
img0 = x[:, :3]
|
73 |
+
img1 = x[:, 3:6]
|
74 |
+
gt = x[:, 6:] # In inference time, gt is None
|
75 |
+
flow_list = []
|
76 |
+
merged = []
|
77 |
+
mask_list = []
|
78 |
+
warped_img0 = img0
|
79 |
+
warped_img1 = img1
|
80 |
+
flow = None
|
81 |
+
loss_distill = 0
|
82 |
+
stu = [self.block0, self.block1, self.block2]
|
83 |
+
for i in range(3):
|
84 |
+
if flow != None:
|
85 |
+
flow_d, mask_d = stu[i](
|
86 |
+
torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
|
87 |
+
)
|
88 |
+
flow = flow + flow_d
|
89 |
+
mask = mask + mask_d
|
90 |
+
else:
|
91 |
+
flow, mask = stu[i](torch.cat((img0, img1, timestep), 1), None, scale=scale[i])
|
92 |
+
mask_list.append(torch.sigmoid(mask))
|
93 |
+
flow_list.append(flow)
|
94 |
+
warped_img0 = warp(img0, flow[:, :2])
|
95 |
+
warped_img1 = warp(img1, flow[:, 2:4])
|
96 |
+
merged_student = (warped_img0, warped_img1)
|
97 |
+
merged.append(merged_student)
|
98 |
+
if gt.shape[1] == 3:
|
99 |
+
flow_d, mask_d = self.block_tea(
|
100 |
+
torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
|
101 |
+
)
|
102 |
+
flow_teacher = flow + flow_d
|
103 |
+
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
|
104 |
+
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
|
105 |
+
mask_teacher = torch.sigmoid(mask + mask_d)
|
106 |
+
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
|
107 |
+
else:
|
108 |
+
flow_teacher = None
|
109 |
+
merged_teacher = None
|
110 |
+
for i in range(3):
|
111 |
+
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
112 |
+
if gt.shape[1] == 3:
|
113 |
+
loss_mask = (
|
114 |
+
((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01)
|
115 |
+
.float()
|
116 |
+
.detach()
|
117 |
+
)
|
118 |
+
loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
|
119 |
+
if returnflow:
|
120 |
+
return flow
|
121 |
+
else:
|
122 |
+
c0 = self.contextnet(img0, flow[:, :2])
|
123 |
+
c1 = self.contextnet(img1, flow[:, 2:4])
|
124 |
+
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
125 |
+
res = tmp[:, :3] * 2 - 1
|
126 |
+
merged[2] = torch.clamp(merged[2] + res, 0, 1)
|
127 |
+
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
|
rife/RIFE.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.optim import AdamW
|
2 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
3 |
+
from .IFNet import *
|
4 |
+
from .IFNet_m import *
|
5 |
+
from .loss import *
|
6 |
+
from .laplacian import *
|
7 |
+
from .refine import *
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
|
12 |
+
class Model:
|
13 |
+
def __init__(self, local_rank=-1, arbitrary=False):
|
14 |
+
if arbitrary == True:
|
15 |
+
self.flownet = IFNet_m()
|
16 |
+
else:
|
17 |
+
self.flownet = IFNet()
|
18 |
+
self.device()
|
19 |
+
self.optimG = AdamW(
|
20 |
+
self.flownet.parameters(), lr=1e-6, weight_decay=1e-3
|
21 |
+
) # use large weight decay may avoid NaN loss
|
22 |
+
self.epe = EPE()
|
23 |
+
self.lap = LapLoss()
|
24 |
+
self.sobel = SOBEL()
|
25 |
+
if local_rank != -1:
|
26 |
+
self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
|
27 |
+
|
28 |
+
def train(self):
|
29 |
+
self.flownet.train()
|
30 |
+
|
31 |
+
def eval(self):
|
32 |
+
self.flownet.eval()
|
33 |
+
|
34 |
+
def device(self):
|
35 |
+
self.flownet.to(device)
|
36 |
+
|
37 |
+
def load_model(self, path, rank=0):
|
38 |
+
def convert(param):
|
39 |
+
return {k.replace("module.", ""): v for k, v in param.items() if "module." in k}
|
40 |
+
|
41 |
+
if rank <= 0:
|
42 |
+
self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path))))
|
43 |
+
|
44 |
+
def save_model(self, path, rank=0):
|
45 |
+
if rank == 0:
|
46 |
+
torch.save(self.flownet.state_dict(), "{}/flownet.pkl".format(path))
|
47 |
+
|
48 |
+
def inference(self, img0, img1, scale=1, scale_list=[4, 2, 1], TTA=False, timestep=0.5):
|
49 |
+
for i in range(3):
|
50 |
+
scale_list[i] = scale_list[i] * 1.0 / scale
|
51 |
+
imgs = torch.cat((img0, img1), 1)
|
52 |
+
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(
|
53 |
+
imgs, scale_list, timestep=timestep
|
54 |
+
)
|
55 |
+
if TTA == False:
|
56 |
+
return merged[2]
|
57 |
+
else:
|
58 |
+
flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(
|
59 |
+
imgs.flip(2).flip(3), scale_list, timestep=timestep
|
60 |
+
)
|
61 |
+
return (merged[2] + merged2[2].flip(2).flip(3)) / 2
|
62 |
+
|
63 |
+
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
64 |
+
for param_group in self.optimG.param_groups:
|
65 |
+
param_group["lr"] = learning_rate
|
66 |
+
img0 = imgs[:, :3]
|
67 |
+
img1 = imgs[:, 3:]
|
68 |
+
if training:
|
69 |
+
self.train()
|
70 |
+
else:
|
71 |
+
self.eval()
|
72 |
+
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(
|
73 |
+
torch.cat((imgs, gt), 1), scale=[4, 2, 1]
|
74 |
+
)
|
75 |
+
loss_l1 = (self.lap(merged[2], gt)).mean()
|
76 |
+
loss_tea = (self.lap(merged_teacher, gt)).mean()
|
77 |
+
if training:
|
78 |
+
self.optimG.zero_grad()
|
79 |
+
loss_G = (
|
80 |
+
loss_l1 + loss_tea + loss_distill * 0.01
|
81 |
+
) # when training RIFEm, the weight of loss_distill should be 0.005 or 0.002
|
82 |
+
loss_G.backward()
|
83 |
+
self.optimG.step()
|
84 |
+
else:
|
85 |
+
flow_teacher = flow[2]
|
86 |
+
return merged[2], {
|
87 |
+
"merged_tea": merged_teacher,
|
88 |
+
"mask": mask,
|
89 |
+
"mask_tea": mask,
|
90 |
+
"flow": flow[2][:, :2],
|
91 |
+
"flow_tea": flow_teacher,
|
92 |
+
"loss_l1": loss_l1,
|
93 |
+
"loss_tea": loss_tea,
|
94 |
+
"loss_distill": loss_distill,
|
95 |
+
}
|
rife/RIFE_HDv3.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from torch.optim import AdamW
|
5 |
+
import torch.optim as optim
|
6 |
+
import itertools
|
7 |
+
from .warplayer import warp
|
8 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
9 |
+
from .IFNet_HDv3 import *
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from .loss import *
|
12 |
+
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
|
16 |
+
class Model:
|
17 |
+
def __init__(self, local_rank=-1):
|
18 |
+
self.flownet = IFNet()
|
19 |
+
self.device()
|
20 |
+
self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-4)
|
21 |
+
self.epe = EPE()
|
22 |
+
# self.vgg = VGGPerceptualLoss().to(device)
|
23 |
+
self.sobel = SOBEL()
|
24 |
+
if local_rank != -1:
|
25 |
+
self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
|
26 |
+
|
27 |
+
def train(self):
|
28 |
+
self.flownet.train()
|
29 |
+
|
30 |
+
def eval(self):
|
31 |
+
self.flownet.eval()
|
32 |
+
|
33 |
+
def device(self):
|
34 |
+
self.flownet.to(device)
|
35 |
+
|
36 |
+
def load_model(self, path, rank=0):
|
37 |
+
def convert(param):
|
38 |
+
if rank == -1:
|
39 |
+
return {k.replace("module.", ""): v for k, v in param.items() if "module." in k}
|
40 |
+
else:
|
41 |
+
return param
|
42 |
+
|
43 |
+
if rank <= 0:
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path))))
|
46 |
+
else:
|
47 |
+
self.flownet.load_state_dict(convert(torch.load("{}/flownet.pkl".format(path), map_location="cpu")))
|
48 |
+
|
49 |
+
def save_model(self, path, rank=0):
|
50 |
+
if rank == 0:
|
51 |
+
torch.save(self.flownet.state_dict(), "{}/flownet.pkl".format(path))
|
52 |
+
|
53 |
+
def inference(self, img0, img1, scale=1.0):
|
54 |
+
imgs = torch.cat((img0, img1), 1)
|
55 |
+
scale_list = [4 / scale, 2 / scale, 1 / scale]
|
56 |
+
flow, mask, merged = self.flownet(imgs, scale_list)
|
57 |
+
return merged[2]
|
58 |
+
|
59 |
+
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
60 |
+
for param_group in self.optimG.param_groups:
|
61 |
+
param_group["lr"] = learning_rate
|
62 |
+
img0 = imgs[:, :3]
|
63 |
+
img1 = imgs[:, 3:]
|
64 |
+
if training:
|
65 |
+
self.train()
|
66 |
+
else:
|
67 |
+
self.eval()
|
68 |
+
scale = [4, 2, 1]
|
69 |
+
flow, mask, merged = self.flownet(torch.cat((imgs, gt), 1), scale=scale, training=training)
|
70 |
+
loss_l1 = (merged[2] - gt).abs().mean()
|
71 |
+
loss_smooth = self.sobel(flow[2], flow[2] * 0).mean()
|
72 |
+
# loss_vgg = self.vgg(merged[2], gt)
|
73 |
+
if training:
|
74 |
+
self.optimG.zero_grad()
|
75 |
+
loss_G = loss_cons + loss_smooth * 0.1
|
76 |
+
loss_G.backward()
|
77 |
+
self.optimG.step()
|
78 |
+
else:
|
79 |
+
flow_teacher = flow[2]
|
80 |
+
return merged[2], {
|
81 |
+
"mask": mask,
|
82 |
+
"flow": flow[2][:, :2],
|
83 |
+
"loss_l1": loss_l1,
|
84 |
+
"loss_cons": loss_cons,
|
85 |
+
"loss_smooth": loss_smooth,
|
86 |
+
}
|
rife/__init__.py
ADDED
File without changes
|
rife/__pycache__/IFNet_HDv3.cpython-312.pyc
ADDED
Binary file (7.18 kB). View file
|
|
rife/__pycache__/RIFE_HDv3.cpython-312.pyc
ADDED
Binary file (5.48 kB). View file
|
|
rife/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (200 Bytes). View file
|
|
rife/__pycache__/loss.cpython-312.pyc
ADDED
Binary file (10.3 kB). View file
|
|
rife/__pycache__/warplayer.cpython-312.pyc
ADDED
Binary file (2.3 kB). View file
|
|
rife/laplacian.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
def gauss_kernel(size=5, channels=3):
|
12 |
+
kernel = torch.tensor(
|
13 |
+
[
|
14 |
+
[1.0, 4.0, 6.0, 4.0, 1],
|
15 |
+
[4.0, 16.0, 24.0, 16.0, 4.0],
|
16 |
+
[6.0, 24.0, 36.0, 24.0, 6.0],
|
17 |
+
[4.0, 16.0, 24.0, 16.0, 4.0],
|
18 |
+
[1.0, 4.0, 6.0, 4.0, 1.0],
|
19 |
+
]
|
20 |
+
)
|
21 |
+
kernel /= 256.0
|
22 |
+
kernel = kernel.repeat(channels, 1, 1, 1)
|
23 |
+
kernel = kernel.to(device)
|
24 |
+
return kernel
|
25 |
+
|
26 |
+
|
27 |
+
def downsample(x):
|
28 |
+
return x[:, :, ::2, ::2]
|
29 |
+
|
30 |
+
|
31 |
+
def upsample(x):
|
32 |
+
cc = torch.cat([x, torch.zeros(x.shape[0], x.shape[1], x.shape[2], x.shape[3]).to(device)], dim=3)
|
33 |
+
cc = cc.view(x.shape[0], x.shape[1], x.shape[2] * 2, x.shape[3])
|
34 |
+
cc = cc.permute(0, 1, 3, 2)
|
35 |
+
cc = torch.cat([cc, torch.zeros(x.shape[0], x.shape[1], x.shape[3], x.shape[2] * 2).to(device)], dim=3)
|
36 |
+
cc = cc.view(x.shape[0], x.shape[1], x.shape[3] * 2, x.shape[2] * 2)
|
37 |
+
x_up = cc.permute(0, 1, 3, 2)
|
38 |
+
return conv_gauss(x_up, 4 * gauss_kernel(channels=x.shape[1]))
|
39 |
+
|
40 |
+
|
41 |
+
def conv_gauss(img, kernel):
|
42 |
+
img = torch.nn.functional.pad(img, (2, 2, 2, 2), mode="reflect")
|
43 |
+
out = torch.nn.functional.conv2d(img, kernel, groups=img.shape[1])
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
def laplacian_pyramid(img, kernel, max_levels=3):
|
48 |
+
current = img
|
49 |
+
pyr = []
|
50 |
+
for level in range(max_levels):
|
51 |
+
filtered = conv_gauss(current, kernel)
|
52 |
+
down = downsample(filtered)
|
53 |
+
up = upsample(down)
|
54 |
+
diff = current - up
|
55 |
+
pyr.append(diff)
|
56 |
+
current = down
|
57 |
+
return pyr
|
58 |
+
|
59 |
+
|
60 |
+
class LapLoss(torch.nn.Module):
|
61 |
+
def __init__(self, max_levels=5, channels=3):
|
62 |
+
super(LapLoss, self).__init__()
|
63 |
+
self.max_levels = max_levels
|
64 |
+
self.gauss_kernel = gauss_kernel(channels=channels)
|
65 |
+
|
66 |
+
def forward(self, input, target):
|
67 |
+
pyr_input = laplacian_pyramid(img=input, kernel=self.gauss_kernel, max_levels=self.max_levels)
|
68 |
+
pyr_target = laplacian_pyramid(img=target, kernel=self.gauss_kernel, max_levels=self.max_levels)
|
69 |
+
return sum(torch.nn.functional.l1_loss(a, b) for a, b in zip(pyr_input, pyr_target))
|
rife/loss.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision.models as models
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
|
10 |
+
class EPE(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super(EPE, self).__init__()
|
13 |
+
|
14 |
+
def forward(self, flow, gt, loss_mask):
|
15 |
+
loss_map = (flow - gt.detach()) ** 2
|
16 |
+
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
|
17 |
+
return loss_map * loss_mask
|
18 |
+
|
19 |
+
|
20 |
+
class Ternary(nn.Module):
|
21 |
+
def __init__(self):
|
22 |
+
super(Ternary, self).__init__()
|
23 |
+
patch_size = 7
|
24 |
+
out_channels = patch_size * patch_size
|
25 |
+
self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
|
26 |
+
self.w = np.transpose(self.w, (3, 2, 0, 1))
|
27 |
+
self.w = torch.tensor(self.w).float().to(device)
|
28 |
+
|
29 |
+
def transform(self, img):
|
30 |
+
patches = F.conv2d(img, self.w, padding=3, bias=None)
|
31 |
+
transf = patches - img
|
32 |
+
transf_norm = transf / torch.sqrt(0.81 + transf**2)
|
33 |
+
return transf_norm
|
34 |
+
|
35 |
+
def rgb2gray(self, rgb):
|
36 |
+
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
|
37 |
+
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
|
38 |
+
return gray
|
39 |
+
|
40 |
+
def hamming(self, t1, t2):
|
41 |
+
dist = (t1 - t2) ** 2
|
42 |
+
dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
|
43 |
+
return dist_norm
|
44 |
+
|
45 |
+
def valid_mask(self, t, padding):
|
46 |
+
n, _, h, w = t.size()
|
47 |
+
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
|
48 |
+
mask = F.pad(inner, [padding] * 4)
|
49 |
+
return mask
|
50 |
+
|
51 |
+
def forward(self, img0, img1):
|
52 |
+
img0 = self.transform(self.rgb2gray(img0))
|
53 |
+
img1 = self.transform(self.rgb2gray(img1))
|
54 |
+
return self.hamming(img0, img1) * self.valid_mask(img0, 1)
|
55 |
+
|
56 |
+
|
57 |
+
class SOBEL(nn.Module):
|
58 |
+
def __init__(self):
|
59 |
+
super(SOBEL, self).__init__()
|
60 |
+
self.kernelX = torch.tensor(
|
61 |
+
[
|
62 |
+
[1, 0, -1],
|
63 |
+
[2, 0, -2],
|
64 |
+
[1, 0, -1],
|
65 |
+
]
|
66 |
+
).float()
|
67 |
+
self.kernelY = self.kernelX.clone().T
|
68 |
+
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
|
69 |
+
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
|
70 |
+
|
71 |
+
def forward(self, pred, gt):
|
72 |
+
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
|
73 |
+
img_stack = torch.cat([pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0)
|
74 |
+
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
|
75 |
+
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
|
76 |
+
pred_X, gt_X = sobel_stack_x[: N * C], sobel_stack_x[N * C :]
|
77 |
+
pred_Y, gt_Y = sobel_stack_y[: N * C], sobel_stack_y[N * C :]
|
78 |
+
|
79 |
+
L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y)
|
80 |
+
loss = L1X + L1Y
|
81 |
+
return loss
|
82 |
+
|
83 |
+
|
84 |
+
class MeanShift(nn.Conv2d):
|
85 |
+
def __init__(self, data_mean, data_std, data_range=1, norm=True):
|
86 |
+
c = len(data_mean)
|
87 |
+
super(MeanShift, self).__init__(c, c, kernel_size=1)
|
88 |
+
std = torch.Tensor(data_std)
|
89 |
+
self.weight.data = torch.eye(c).view(c, c, 1, 1)
|
90 |
+
if norm:
|
91 |
+
self.weight.data.div_(std.view(c, 1, 1, 1))
|
92 |
+
self.bias.data = -1 * data_range * torch.Tensor(data_mean)
|
93 |
+
self.bias.data.div_(std)
|
94 |
+
else:
|
95 |
+
self.weight.data.mul_(std.view(c, 1, 1, 1))
|
96 |
+
self.bias.data = data_range * torch.Tensor(data_mean)
|
97 |
+
self.requires_grad = False
|
98 |
+
|
99 |
+
|
100 |
+
class VGGPerceptualLoss(torch.nn.Module):
|
101 |
+
def __init__(self, rank=0):
|
102 |
+
super(VGGPerceptualLoss, self).__init__()
|
103 |
+
blocks = []
|
104 |
+
pretrained = True
|
105 |
+
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
|
106 |
+
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
|
107 |
+
for param in self.parameters():
|
108 |
+
param.requires_grad = False
|
109 |
+
|
110 |
+
def forward(self, X, Y, indices=None):
|
111 |
+
X = self.normalize(X)
|
112 |
+
Y = self.normalize(Y)
|
113 |
+
indices = [2, 7, 12, 21, 30]
|
114 |
+
weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5]
|
115 |
+
k = 0
|
116 |
+
loss = 0
|
117 |
+
for i in range(indices[-1]):
|
118 |
+
X = self.vgg_pretrained_features[i](X)
|
119 |
+
Y = self.vgg_pretrained_features[i](Y)
|
120 |
+
if (i + 1) in indices:
|
121 |
+
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
|
122 |
+
k += 1
|
123 |
+
return loss
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
128 |
+
img1 = torch.tensor(np.random.normal(0, 1, (3, 3, 256, 256))).float().to(device)
|
129 |
+
ternary_loss = Ternary()
|
130 |
+
print(ternary_loss(img0, img1).shape)
|
rife/pytorch_msssim/__init__.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from math import exp
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
|
9 |
+
def gaussian(window_size, sigma):
|
10 |
+
gauss = torch.Tensor([exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) for x in range(window_size)])
|
11 |
+
return gauss / gauss.sum()
|
12 |
+
|
13 |
+
|
14 |
+
def create_window(window_size, channel=1):
|
15 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
16 |
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device)
|
17 |
+
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
18 |
+
return window
|
19 |
+
|
20 |
+
|
21 |
+
def create_window_3d(window_size, channel=1):
|
22 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
23 |
+
_2D_window = _1D_window.mm(_1D_window.t())
|
24 |
+
_3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t())
|
25 |
+
window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device)
|
26 |
+
return window
|
27 |
+
|
28 |
+
|
29 |
+
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
30 |
+
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
|
31 |
+
if val_range is None:
|
32 |
+
if torch.max(img1) > 128:
|
33 |
+
max_val = 255
|
34 |
+
else:
|
35 |
+
max_val = 1
|
36 |
+
|
37 |
+
if torch.min(img1) < -0.5:
|
38 |
+
min_val = -1
|
39 |
+
else:
|
40 |
+
min_val = 0
|
41 |
+
L = max_val - min_val
|
42 |
+
else:
|
43 |
+
L = val_range
|
44 |
+
|
45 |
+
padd = 0
|
46 |
+
(_, channel, height, width) = img1.size()
|
47 |
+
if window is None:
|
48 |
+
real_size = min(window_size, height, width)
|
49 |
+
window = create_window(real_size, channel=channel).to(img1.device)
|
50 |
+
|
51 |
+
# mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
|
52 |
+
# mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
|
53 |
+
mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel)
|
54 |
+
mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=channel)
|
55 |
+
|
56 |
+
mu1_sq = mu1.pow(2)
|
57 |
+
mu2_sq = mu2.pow(2)
|
58 |
+
mu1_mu2 = mu1 * mu2
|
59 |
+
|
60 |
+
sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_sq
|
61 |
+
sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu2_sq
|
62 |
+
sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), "replicate"), window, padding=padd, groups=channel) - mu1_mu2
|
63 |
+
|
64 |
+
C1 = (0.01 * L) ** 2
|
65 |
+
C2 = (0.03 * L) ** 2
|
66 |
+
|
67 |
+
v1 = 2.0 * sigma12 + C2
|
68 |
+
v2 = sigma1_sq + sigma2_sq + C2
|
69 |
+
cs = torch.mean(v1 / v2) # contrast sensitivity
|
70 |
+
|
71 |
+
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
72 |
+
|
73 |
+
if size_average:
|
74 |
+
ret = ssim_map.mean()
|
75 |
+
else:
|
76 |
+
ret = ssim_map.mean(1).mean(1).mean(1)
|
77 |
+
|
78 |
+
if full:
|
79 |
+
return ret, cs
|
80 |
+
return ret
|
81 |
+
|
82 |
+
|
83 |
+
def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
84 |
+
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
|
85 |
+
if val_range is None:
|
86 |
+
if torch.max(img1) > 128:
|
87 |
+
max_val = 255
|
88 |
+
else:
|
89 |
+
max_val = 1
|
90 |
+
|
91 |
+
if torch.min(img1) < -0.5:
|
92 |
+
min_val = -1
|
93 |
+
else:
|
94 |
+
min_val = 0
|
95 |
+
L = max_val - min_val
|
96 |
+
else:
|
97 |
+
L = val_range
|
98 |
+
|
99 |
+
padd = 0
|
100 |
+
(_, _, height, width) = img1.size()
|
101 |
+
if window is None:
|
102 |
+
real_size = min(window_size, height, width)
|
103 |
+
window = create_window_3d(real_size, channel=1).to(img1.device, dtype=img1.dtype)
|
104 |
+
# Channel is set to 1 since we consider color images as volumetric images
|
105 |
+
|
106 |
+
img1 = img1.unsqueeze(1)
|
107 |
+
img2 = img2.unsqueeze(1)
|
108 |
+
|
109 |
+
mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1)
|
110 |
+
mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode="replicate"), window, padding=padd, groups=1)
|
111 |
+
|
112 |
+
mu1_sq = mu1.pow(2)
|
113 |
+
mu2_sq = mu2.pow(2)
|
114 |
+
mu1_mu2 = mu1 * mu2
|
115 |
+
|
116 |
+
sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_sq
|
117 |
+
sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu2_sq
|
118 |
+
sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), "replicate"), window, padding=padd, groups=1) - mu1_mu2
|
119 |
+
|
120 |
+
C1 = (0.01 * L) ** 2
|
121 |
+
C2 = (0.03 * L) ** 2
|
122 |
+
|
123 |
+
v1 = 2.0 * sigma12 + C2
|
124 |
+
v2 = sigma1_sq + sigma2_sq + C2
|
125 |
+
cs = torch.mean(v1 / v2) # contrast sensitivity
|
126 |
+
|
127 |
+
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
128 |
+
|
129 |
+
if size_average:
|
130 |
+
ret = ssim_map.mean()
|
131 |
+
else:
|
132 |
+
ret = ssim_map.mean(1).mean(1).mean(1)
|
133 |
+
|
134 |
+
if full:
|
135 |
+
return ret, cs
|
136 |
+
return ret
|
137 |
+
|
138 |
+
|
139 |
+
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False):
|
140 |
+
device = img1.device
|
141 |
+
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
|
142 |
+
levels = weights.size()[0]
|
143 |
+
mssim = []
|
144 |
+
mcs = []
|
145 |
+
for _ in range(levels):
|
146 |
+
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
|
147 |
+
mssim.append(sim)
|
148 |
+
mcs.append(cs)
|
149 |
+
|
150 |
+
img1 = F.avg_pool2d(img1, (2, 2))
|
151 |
+
img2 = F.avg_pool2d(img2, (2, 2))
|
152 |
+
|
153 |
+
mssim = torch.stack(mssim)
|
154 |
+
mcs = torch.stack(mcs)
|
155 |
+
|
156 |
+
# Normalize (to avoid NaNs during training unstable models, not compliant with original definition)
|
157 |
+
if normalize:
|
158 |
+
mssim = (mssim + 1) / 2
|
159 |
+
mcs = (mcs + 1) / 2
|
160 |
+
|
161 |
+
pow1 = mcs**weights
|
162 |
+
pow2 = mssim**weights
|
163 |
+
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
|
164 |
+
output = torch.prod(pow1[:-1] * pow2[-1])
|
165 |
+
return output
|
166 |
+
|
167 |
+
|
168 |
+
# Classes to re-use window
|
169 |
+
class SSIM(torch.nn.Module):
|
170 |
+
def __init__(self, window_size=11, size_average=True, val_range=None):
|
171 |
+
super(SSIM, self).__init__()
|
172 |
+
self.window_size = window_size
|
173 |
+
self.size_average = size_average
|
174 |
+
self.val_range = val_range
|
175 |
+
|
176 |
+
# Assume 3 channel for SSIM
|
177 |
+
self.channel = 3
|
178 |
+
self.window = create_window(window_size, channel=self.channel)
|
179 |
+
|
180 |
+
def forward(self, img1, img2):
|
181 |
+
(_, channel, _, _) = img1.size()
|
182 |
+
|
183 |
+
if channel == self.channel and self.window.dtype == img1.dtype:
|
184 |
+
window = self.window
|
185 |
+
else:
|
186 |
+
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
|
187 |
+
self.window = window
|
188 |
+
self.channel = channel
|
189 |
+
|
190 |
+
_ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
|
191 |
+
dssim = (1 - _ssim) / 2
|
192 |
+
return dssim
|
193 |
+
|
194 |
+
|
195 |
+
class MSSSIM(torch.nn.Module):
|
196 |
+
def __init__(self, window_size=11, size_average=True, channel=3):
|
197 |
+
super(MSSSIM, self).__init__()
|
198 |
+
self.window_size = window_size
|
199 |
+
self.size_average = size_average
|
200 |
+
self.channel = channel
|
201 |
+
|
202 |
+
def forward(self, img1, img2):
|
203 |
+
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
|
rife/pytorch_msssim/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (10.4 kB). View file
|
|
rife/refine.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .warplayer import warp
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
|
9 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
10 |
+
return nn.Sequential(
|
11 |
+
nn.Conv2d(
|
12 |
+
in_planes,
|
13 |
+
out_planes,
|
14 |
+
kernel_size=kernel_size,
|
15 |
+
stride=stride,
|
16 |
+
padding=padding,
|
17 |
+
dilation=dilation,
|
18 |
+
bias=True,
|
19 |
+
),
|
20 |
+
nn.PReLU(out_planes),
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
25 |
+
return nn.Sequential(
|
26 |
+
torch.nn.ConvTranspose2d(
|
27 |
+
in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True
|
28 |
+
),
|
29 |
+
nn.PReLU(out_planes),
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class Conv2(nn.Module):
|
34 |
+
def __init__(self, in_planes, out_planes, stride=2):
|
35 |
+
super(Conv2, self).__init__()
|
36 |
+
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
37 |
+
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.conv1(x)
|
41 |
+
x = self.conv2(x)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
c = 16
|
46 |
+
|
47 |
+
|
48 |
+
class Contextnet(nn.Module):
|
49 |
+
def __init__(self):
|
50 |
+
super(Contextnet, self).__init__()
|
51 |
+
self.conv1 = Conv2(3, c)
|
52 |
+
self.conv2 = Conv2(c, 2 * c)
|
53 |
+
self.conv3 = Conv2(2 * c, 4 * c)
|
54 |
+
self.conv4 = Conv2(4 * c, 8 * c)
|
55 |
+
|
56 |
+
def forward(self, x, flow):
|
57 |
+
x = self.conv1(x)
|
58 |
+
flow = (
|
59 |
+
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
60 |
+
* 0.5
|
61 |
+
)
|
62 |
+
f1 = warp(x, flow)
|
63 |
+
x = self.conv2(x)
|
64 |
+
flow = (
|
65 |
+
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
66 |
+
* 0.5
|
67 |
+
)
|
68 |
+
f2 = warp(x, flow)
|
69 |
+
x = self.conv3(x)
|
70 |
+
flow = (
|
71 |
+
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
72 |
+
* 0.5
|
73 |
+
)
|
74 |
+
f3 = warp(x, flow)
|
75 |
+
x = self.conv4(x)
|
76 |
+
flow = (
|
77 |
+
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
78 |
+
* 0.5
|
79 |
+
)
|
80 |
+
f4 = warp(x, flow)
|
81 |
+
return [f1, f2, f3, f4]
|
82 |
+
|
83 |
+
|
84 |
+
class Unet(nn.Module):
|
85 |
+
def __init__(self):
|
86 |
+
super(Unet, self).__init__()
|
87 |
+
self.down0 = Conv2(17, 2 * c)
|
88 |
+
self.down1 = Conv2(4 * c, 4 * c)
|
89 |
+
self.down2 = Conv2(8 * c, 8 * c)
|
90 |
+
self.down3 = Conv2(16 * c, 16 * c)
|
91 |
+
self.up0 = deconv(32 * c, 8 * c)
|
92 |
+
self.up1 = deconv(16 * c, 4 * c)
|
93 |
+
self.up2 = deconv(8 * c, 2 * c)
|
94 |
+
self.up3 = deconv(4 * c, c)
|
95 |
+
self.conv = nn.Conv2d(c, 3, 3, 1, 1)
|
96 |
+
|
97 |
+
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
|
98 |
+
s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
|
99 |
+
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
100 |
+
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
101 |
+
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
102 |
+
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
103 |
+
x = self.up1(torch.cat((x, s2), 1))
|
104 |
+
x = self.up2(torch.cat((x, s1), 1))
|
105 |
+
x = self.up3(torch.cat((x, s0), 1))
|
106 |
+
x = self.conv(x)
|
107 |
+
return torch.sigmoid(x)
|
rife/refine_2R.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .warplayer import warp
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
|
9 |
+
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
10 |
+
return nn.Sequential(
|
11 |
+
nn.Conv2d(
|
12 |
+
in_planes,
|
13 |
+
out_planes,
|
14 |
+
kernel_size=kernel_size,
|
15 |
+
stride=stride,
|
16 |
+
padding=padding,
|
17 |
+
dilation=dilation,
|
18 |
+
bias=True,
|
19 |
+
),
|
20 |
+
nn.PReLU(out_planes),
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
25 |
+
return nn.Sequential(
|
26 |
+
torch.nn.ConvTranspose2d(
|
27 |
+
in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True
|
28 |
+
),
|
29 |
+
nn.PReLU(out_planes),
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class Conv2(nn.Module):
|
34 |
+
def __init__(self, in_planes, out_planes, stride=2):
|
35 |
+
super(Conv2, self).__init__()
|
36 |
+
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
37 |
+
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.conv1(x)
|
41 |
+
x = self.conv2(x)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
c = 16
|
46 |
+
|
47 |
+
|
48 |
+
class Contextnet(nn.Module):
|
49 |
+
def __init__(self):
|
50 |
+
super(Contextnet, self).__init__()
|
51 |
+
self.conv1 = Conv2(3, c, 1)
|
52 |
+
self.conv2 = Conv2(c, 2 * c)
|
53 |
+
self.conv3 = Conv2(2 * c, 4 * c)
|
54 |
+
self.conv4 = Conv2(4 * c, 8 * c)
|
55 |
+
|
56 |
+
def forward(self, x, flow):
|
57 |
+
x = self.conv1(x)
|
58 |
+
# flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
|
59 |
+
f1 = warp(x, flow)
|
60 |
+
x = self.conv2(x)
|
61 |
+
flow = (
|
62 |
+
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
63 |
+
* 0.5
|
64 |
+
)
|
65 |
+
f2 = warp(x, flow)
|
66 |
+
x = self.conv3(x)
|
67 |
+
flow = (
|
68 |
+
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
69 |
+
* 0.5
|
70 |
+
)
|
71 |
+
f3 = warp(x, flow)
|
72 |
+
x = self.conv4(x)
|
73 |
+
flow = (
|
74 |
+
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
|
75 |
+
* 0.5
|
76 |
+
)
|
77 |
+
f4 = warp(x, flow)
|
78 |
+
return [f1, f2, f3, f4]
|
79 |
+
|
80 |
+
|
81 |
+
class Unet(nn.Module):
|
82 |
+
def __init__(self):
|
83 |
+
super(Unet, self).__init__()
|
84 |
+
self.down0 = Conv2(17, 2 * c, 1)
|
85 |
+
self.down1 = Conv2(4 * c, 4 * c)
|
86 |
+
self.down2 = Conv2(8 * c, 8 * c)
|
87 |
+
self.down3 = Conv2(16 * c, 16 * c)
|
88 |
+
self.up0 = deconv(32 * c, 8 * c)
|
89 |
+
self.up1 = deconv(16 * c, 4 * c)
|
90 |
+
self.up2 = deconv(8 * c, 2 * c)
|
91 |
+
self.up3 = deconv(4 * c, c)
|
92 |
+
self.conv = nn.Conv2d(c, 3, 3, 2, 1)
|
93 |
+
|
94 |
+
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
|
95 |
+
s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
|
96 |
+
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
97 |
+
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
98 |
+
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
99 |
+
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
100 |
+
x = self.up1(torch.cat((x, s2), 1))
|
101 |
+
x = self.up2(torch.cat((x, s1), 1))
|
102 |
+
x = self.up3(torch.cat((x, s0), 1))
|
103 |
+
x = self.conv(x)
|
104 |
+
return torch.sigmoid(x)
|
rife/warplayer.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
5 |
+
backwarp_tenGrid = {}
|
6 |
+
|
7 |
+
|
8 |
+
def warp(tenInput, tenFlow):
|
9 |
+
k = (str(tenFlow.device), str(tenFlow.size()))
|
10 |
+
if k not in backwarp_tenGrid:
|
11 |
+
tenHorizontal = (
|
12 |
+
torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device)
|
13 |
+
.view(1, 1, 1, tenFlow.shape[3])
|
14 |
+
.expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
|
15 |
+
)
|
16 |
+
tenVertical = (
|
17 |
+
torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device)
|
18 |
+
.view(1, 1, tenFlow.shape[2], 1)
|
19 |
+
.expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
|
20 |
+
)
|
21 |
+
backwarp_tenGrid[k] = torch.cat([tenHorizontal, tenVertical], 1).to(device)
|
22 |
+
|
23 |
+
tenFlow = torch.cat(
|
24 |
+
[
|
25 |
+
tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
|
26 |
+
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0),
|
27 |
+
],
|
28 |
+
1,
|
29 |
+
)
|
30 |
+
|
31 |
+
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
|
32 |
+
return torch.nn.functional.grid_sample(
|
33 |
+
input=tenInput, grid=g, mode="bilinear", padding_mode="border", align_corners=True
|
34 |
+
)
|
rife_model.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.image_processor import VaeImageProcessor
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import cv2
|
5 |
+
import utils
|
6 |
+
from rife.pytorch_msssim import ssim_matlab
|
7 |
+
import numpy as np
|
8 |
+
import logging
|
9 |
+
import skvideo.io
|
10 |
+
from rife.RIFE_HDv3 import Model
|
11 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
|
17 |
+
def pad_image(img, scale):
|
18 |
+
_, _, h, w = img.shape
|
19 |
+
tmp = max(32, int(32 / scale))
|
20 |
+
ph = ((h - 1) // tmp + 1) * tmp
|
21 |
+
pw = ((w - 1) // tmp + 1) * tmp
|
22 |
+
padding = (0, pw - w, 0, ph - h)
|
23 |
+
return F.pad(img, padding), padding
|
24 |
+
|
25 |
+
|
26 |
+
def make_inference(model, I0, I1, upscale_amount, n):
|
27 |
+
middle = model.inference(I0, I1, upscale_amount)
|
28 |
+
if n == 1:
|
29 |
+
return [middle]
|
30 |
+
first_half = make_inference(model, I0, middle, upscale_amount, n=n // 2)
|
31 |
+
second_half = make_inference(model, middle, I1, upscale_amount, n=n // 2)
|
32 |
+
if n % 2:
|
33 |
+
return [*first_half, middle, *second_half]
|
34 |
+
else:
|
35 |
+
return [*first_half, *second_half]
|
36 |
+
|
37 |
+
|
38 |
+
@torch.inference_mode()
|
39 |
+
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
|
40 |
+
print(f"samples dtype:{samples.dtype}")
|
41 |
+
print(f"samples shape:{samples.shape}")
|
42 |
+
output = []
|
43 |
+
pbar = utils.ProgressBar(samples.shape[0], desc="RIFE inference")
|
44 |
+
# [f, c, h, w]
|
45 |
+
for b in range(samples.shape[0]):
|
46 |
+
frame = samples[b : b + 1]
|
47 |
+
_, _, h, w = frame.shape
|
48 |
+
|
49 |
+
I0 = samples[b : b + 1]
|
50 |
+
I1 = samples[b + 1 : b + 2] if b + 2 < samples.shape[0] else samples[-1:]
|
51 |
+
|
52 |
+
I0, padding = pad_image(I0, upscale_amount)
|
53 |
+
I0 = I0.to(torch.float)
|
54 |
+
I1, _ = pad_image(I1, upscale_amount)
|
55 |
+
I1 = I1.to(torch.float)
|
56 |
+
|
57 |
+
# [c, h, w]
|
58 |
+
I0_small = F.interpolate(I0, (32, 32), mode="bilinear", align_corners=False)
|
59 |
+
I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)
|
60 |
+
|
61 |
+
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
|
62 |
+
|
63 |
+
if ssim > 0.996:
|
64 |
+
I1 = samples[b : b + 1]
|
65 |
+
# print(f'upscale_amount:{upscale_amount}')
|
66 |
+
# print(f'ssim:{upscale_amount}')
|
67 |
+
# print(f'I0 shape:{I0.shape}')
|
68 |
+
# print(f'I1 shape:{I1.shape}')
|
69 |
+
I1, padding = pad_image(I1, upscale_amount)
|
70 |
+
# print(f'I0 shape:{I0.shape}')
|
71 |
+
# print(f'I1 shape:{I1.shape}')
|
72 |
+
I1 = make_inference(model, I0, I1, upscale_amount, 1)
|
73 |
+
|
74 |
+
# print(f'I0 shape:{I0.shape}')
|
75 |
+
# print(f'I1[0] shape:{I1[0].shape}')
|
76 |
+
I1 = I1[0]
|
77 |
+
|
78 |
+
# print(f'I1[0] unpadded shape:{I1.shape}')
|
79 |
+
I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)
|
80 |
+
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
|
81 |
+
if padding[3] > 0 and padding[1] >0 :
|
82 |
+
|
83 |
+
frame = I1[:, :, : -padding[3],:-padding[1]]
|
84 |
+
elif padding[3] > 0:
|
85 |
+
frame = I1[:, :, : -padding[3],:]
|
86 |
+
elif padding[1] >0:
|
87 |
+
frame = I1[:, :, :,:-padding[1]]
|
88 |
+
else:
|
89 |
+
frame = I1
|
90 |
+
|
91 |
+
tmp_output = []
|
92 |
+
if ssim < 0.2:
|
93 |
+
for i in range((2**exp) - 1):
|
94 |
+
tmp_output.append(I0)
|
95 |
+
|
96 |
+
else:
|
97 |
+
tmp_output = make_inference(model, I0, I1, upscale_amount, 2**exp - 1) if exp else []
|
98 |
+
|
99 |
+
frame, _ = pad_image(frame, upscale_amount)
|
100 |
+
# print(f'frame shape:{frame.shape}')
|
101 |
+
|
102 |
+
frame = F.interpolate(frame, size=(h, w))
|
103 |
+
output.append(frame.to(output_device))
|
104 |
+
for i, tmp_frame in enumerate(tmp_output):
|
105 |
+
|
106 |
+
# tmp_frame, _ = pad_image(tmp_frame, upscale_amount)
|
107 |
+
tmp_frame = F.interpolate(tmp_frame, size=(h, w))
|
108 |
+
output.append(tmp_frame.to(output_device))
|
109 |
+
pbar.update(1)
|
110 |
+
return output
|
111 |
+
|
112 |
+
|
113 |
+
def load_rife_model(model_path):
|
114 |
+
model = Model()
|
115 |
+
model.load_model(model_path, -1)
|
116 |
+
model.eval()
|
117 |
+
return model
|
118 |
+
|
119 |
+
|
120 |
+
# Create a generator that yields each frame, similar to cv2.VideoCapture
|
121 |
+
def frame_generator(video_capture):
|
122 |
+
while True:
|
123 |
+
ret, frame = video_capture.read()
|
124 |
+
if not ret:
|
125 |
+
break
|
126 |
+
yield frame
|
127 |
+
video_capture.release()
|
128 |
+
|
129 |
+
|
130 |
+
def rife_inference_with_path(model, video_path):
|
131 |
+
# Open the video file
|
132 |
+
video_capture = cv2.VideoCapture(video_path)
|
133 |
+
fps = video_capture.get(cv2.CAP_PROP_FPS) # Get the frames per second
|
134 |
+
tot_frame = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) # Total frames in the video
|
135 |
+
pt_frame_data = []
|
136 |
+
pt_frame = skvideo.io.vreader(video_path)
|
137 |
+
# Cyclic reading of the video frames
|
138 |
+
while video_capture.isOpened():
|
139 |
+
ret, frame = video_capture.read()
|
140 |
+
|
141 |
+
if not ret:
|
142 |
+
break
|
143 |
+
|
144 |
+
# BGR to RGB
|
145 |
+
frame_rgb = frame[..., ::-1]
|
146 |
+
frame_rgb = frame_rgb.copy()
|
147 |
+
tensor = torch.from_numpy(frame_rgb).float().to("cpu", non_blocking=True).float() / 255.0
|
148 |
+
pt_frame_data.append(
|
149 |
+
tensor.permute(2, 0, 1)
|
150 |
+
) # to [c, h, w,]
|
151 |
+
|
152 |
+
pt_frame = torch.from_numpy(np.stack(pt_frame_data))
|
153 |
+
pt_frame = pt_frame.to(device)
|
154 |
+
pbar = utils.ProgressBar(tot_frame, desc="RIFE inference")
|
155 |
+
frames = ssim_interpolation_rife(model, pt_frame)
|
156 |
+
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))])
|
157 |
+
image_np = VaeImageProcessor.pt_to_numpy(pt_image) # (to [49, 512, 480, 3])
|
158 |
+
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
|
159 |
+
video_path = utils.save_video(image_pil, fps=16)
|
160 |
+
if pbar:
|
161 |
+
pbar.update(1)
|
162 |
+
return video_path
|
163 |
+
|
164 |
+
|
165 |
+
def rife_inference_with_latents(model, latents):
|
166 |
+
rife_results = []
|
167 |
+
latents = latents.to(device)
|
168 |
+
for i in range(latents.size(0)):
|
169 |
+
# [f, c, w, h]
|
170 |
+
latent = latents[i]
|
171 |
+
|
172 |
+
frames = ssim_interpolation_rife(model, latent)
|
173 |
+
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) # (to [f, c, w, h])
|
174 |
+
rife_results.append(pt_image)
|
175 |
+
|
176 |
+
return torch.stack(rife_results)
|
177 |
+
|
178 |
+
|
179 |
+
# if __name__ == "__main__":
|
180 |
+
# snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
181 |
+
# model = load_rife_model("model_rife")
|
182 |
+
|
183 |
+
# video_path = rife_inference_with_path(model, "/mnt/ceph/develop/jiawei/CogVideo/output/20241003_130720.mp4")
|
184 |
+
# print(video_path)
|
utils.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Union, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
from datetime import datetime
|
7 |
+
import numpy as np
|
8 |
+
import itertools
|
9 |
+
import PIL.Image
|
10 |
+
import safetensors.torch
|
11 |
+
import tqdm
|
12 |
+
import logging
|
13 |
+
from diffusers.utils import export_to_video
|
14 |
+
from spandrel import ModelLoader
|
15 |
+
|
16 |
+
logger = logging.getLogger(__file__)
|
17 |
+
|
18 |
+
|
19 |
+
def load_torch_file(ckpt, device=None, dtype=torch.float16):
|
20 |
+
if device is None:
|
21 |
+
device = torch.device("cpu")
|
22 |
+
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
|
23 |
+
sd = safetensors.torch.load_file(ckpt, device=device.type)
|
24 |
+
else:
|
25 |
+
if not "weights_only" in torch.load.__code__.co_varnames:
|
26 |
+
logger.warning(
|
27 |
+
"Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely."
|
28 |
+
)
|
29 |
+
|
30 |
+
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
31 |
+
if "global_step" in pl_sd:
|
32 |
+
logger.debug(f"Global Step: {pl_sd['global_step']}")
|
33 |
+
if "state_dict" in pl_sd:
|
34 |
+
sd = pl_sd["state_dict"]
|
35 |
+
elif "params_ema" in pl_sd:
|
36 |
+
sd = pl_sd["params_ema"]
|
37 |
+
else:
|
38 |
+
sd = pl_sd
|
39 |
+
|
40 |
+
sd = {k: v.to(dtype) for k, v in sd.items()}
|
41 |
+
return sd
|
42 |
+
|
43 |
+
|
44 |
+
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
|
45 |
+
if filter_keys:
|
46 |
+
out = {}
|
47 |
+
else:
|
48 |
+
out = state_dict
|
49 |
+
for rp in replace_prefix:
|
50 |
+
replace = list(
|
51 |
+
map(
|
52 |
+
lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp) :])),
|
53 |
+
filter(lambda a: a.startswith(rp), state_dict.keys()),
|
54 |
+
)
|
55 |
+
)
|
56 |
+
for x in replace:
|
57 |
+
w = state_dict.pop(x[0])
|
58 |
+
out[x[1]] = w
|
59 |
+
return out
|
60 |
+
|
61 |
+
|
62 |
+
def module_size(module):
|
63 |
+
module_mem = 0
|
64 |
+
sd = module.state_dict()
|
65 |
+
for k in sd:
|
66 |
+
t = sd[k]
|
67 |
+
module_mem += t.nelement() * t.element_size()
|
68 |
+
return module_mem
|
69 |
+
|
70 |
+
|
71 |
+
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
|
72 |
+
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
|
73 |
+
|
74 |
+
|
75 |
+
@torch.inference_mode()
|
76 |
+
def tiled_scale_multidim(
|
77 |
+
samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", pbar=None
|
78 |
+
):
|
79 |
+
dims = len(tile)
|
80 |
+
print(f"samples dtype:{samples.dtype}")
|
81 |
+
output = torch.empty(
|
82 |
+
[samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])),
|
83 |
+
device=output_device,
|
84 |
+
)
|
85 |
+
|
86 |
+
for b in range(samples.shape[0]):
|
87 |
+
s = samples[b : b + 1]
|
88 |
+
out = torch.zeros(
|
89 |
+
[s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
|
90 |
+
device=output_device,
|
91 |
+
)
|
92 |
+
out_div = torch.zeros(
|
93 |
+
[s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
|
94 |
+
device=output_device,
|
95 |
+
)
|
96 |
+
|
97 |
+
for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))):
|
98 |
+
s_in = s
|
99 |
+
upscaled = []
|
100 |
+
|
101 |
+
for d in range(dims):
|
102 |
+
pos = max(0, min(s.shape[d + 2] - overlap, it[d]))
|
103 |
+
l = min(tile[d], s.shape[d + 2] - pos)
|
104 |
+
s_in = s_in.narrow(d + 2, pos, l)
|
105 |
+
upscaled.append(round(pos * upscale_amount))
|
106 |
+
|
107 |
+
ps = function(s_in).to(output_device)
|
108 |
+
mask = torch.ones_like(ps)
|
109 |
+
feather = round(overlap * upscale_amount)
|
110 |
+
for t in range(feather):
|
111 |
+
for d in range(2, dims + 2):
|
112 |
+
m = mask.narrow(d, t, 1)
|
113 |
+
m *= (1.0 / feather) * (t + 1)
|
114 |
+
m = mask.narrow(d, mask.shape[d] - 1 - t, 1)
|
115 |
+
m *= (1.0 / feather) * (t + 1)
|
116 |
+
|
117 |
+
o = out
|
118 |
+
o_d = out_div
|
119 |
+
for d in range(dims):
|
120 |
+
o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
|
121 |
+
o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])
|
122 |
+
|
123 |
+
o += ps * mask
|
124 |
+
o_d += mask
|
125 |
+
|
126 |
+
if pbar is not None:
|
127 |
+
pbar.update(1)
|
128 |
+
|
129 |
+
output[b : b + 1] = out / out_div
|
130 |
+
return output
|
131 |
+
|
132 |
+
|
133 |
+
def tiled_scale(
|
134 |
+
samples,
|
135 |
+
function,
|
136 |
+
tile_x=64,
|
137 |
+
tile_y=64,
|
138 |
+
overlap=8,
|
139 |
+
upscale_amount=4,
|
140 |
+
out_channels=3,
|
141 |
+
output_device="cpu",
|
142 |
+
pbar=None,
|
143 |
+
):
|
144 |
+
return tiled_scale_multidim(
|
145 |
+
samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
def load_sd_upscale(ckpt, inf_device):
|
150 |
+
sd = load_torch_file(ckpt, device=inf_device)
|
151 |
+
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
|
152 |
+
sd = state_dict_prefix_replace(sd, {"module.": ""})
|
153 |
+
out = ModelLoader().load_from_state_dict(sd).half()
|
154 |
+
return out
|
155 |
+
|
156 |
+
|
157 |
+
def upscale(upscale_model, tensor: torch.Tensor, inf_device, output_device="cpu") -> torch.Tensor:
|
158 |
+
memory_required = module_size(upscale_model.model)
|
159 |
+
memory_required += (
|
160 |
+
(512 * 512 * 3) * tensor.element_size() * max(upscale_model.scale, 1.0) * 384.0
|
161 |
+
) # The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate
|
162 |
+
memory_required += tensor.nelement() * tensor.element_size()
|
163 |
+
print(f"UPScaleMemory required: {memory_required / 1024 / 1024 / 1024} GB")
|
164 |
+
|
165 |
+
upscale_model.to(inf_device)
|
166 |
+
tile = 512
|
167 |
+
overlap = 32
|
168 |
+
|
169 |
+
steps = tensor.shape[0] * get_tiled_scale_steps(
|
170 |
+
tensor.shape[3], tensor.shape[2], tile_x=tile, tile_y=tile, overlap=overlap
|
171 |
+
)
|
172 |
+
|
173 |
+
pbar = ProgressBar(steps, desc="Tiling and Upscaling")
|
174 |
+
|
175 |
+
s = tiled_scale(
|
176 |
+
samples=tensor.to(torch.float16),
|
177 |
+
function=lambda a: upscale_model(a),
|
178 |
+
tile_x=tile,
|
179 |
+
tile_y=tile,
|
180 |
+
overlap=overlap,
|
181 |
+
upscale_amount=upscale_model.scale,
|
182 |
+
pbar=pbar,
|
183 |
+
)
|
184 |
+
|
185 |
+
upscale_model.to(output_device)
|
186 |
+
return s
|
187 |
+
|
188 |
+
|
189 |
+
def upscale_batch_and_concatenate(upscale_model, latents, inf_device, output_device="cpu") -> torch.Tensor:
|
190 |
+
upscaled_latents = []
|
191 |
+
for i in range(latents.size(0)):
|
192 |
+
latent = latents[i]
|
193 |
+
upscaled_latent = upscale(upscale_model, latent, inf_device, output_device)
|
194 |
+
upscaled_latents.append(upscaled_latent)
|
195 |
+
return torch.stack(upscaled_latents)
|
196 |
+
|
197 |
+
|
198 |
+
def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8):
|
199 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
200 |
+
video_path = f"./output/{timestamp}.mp4"
|
201 |
+
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
202 |
+
export_to_video(tensor, video_path, fps=fps)
|
203 |
+
return video_path
|
204 |
+
|
205 |
+
|
206 |
+
class ProgressBar:
|
207 |
+
def __init__(self, total, desc=None):
|
208 |
+
self.total = total
|
209 |
+
self.current = 0
|
210 |
+
self.b_unit = tqdm.tqdm(total=total, desc="ProgressBar context index: 0" if desc is None else desc)
|
211 |
+
|
212 |
+
def update(self, value):
|
213 |
+
if value > self.total:
|
214 |
+
value = self.total
|
215 |
+
self.current = value
|
216 |
+
if self.b_unit is not None:
|
217 |
+
self.b_unit.set_description("ProgressBar context index: {}".format(self.current))
|
218 |
+
self.b_unit.refresh()
|
219 |
+
|
220 |
+
# 更新进度
|
221 |
+
self.b_unit.update(self.current)
|