File size: 7,520 Bytes
ad17f03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser, SimpleJsonOutputParser
from langchain_openai import ChatOpenAI
import re

import concurrent.futures
import copy
import os

class LangChainExecutor:
    def __init__(self, model_name):
        self.model_name = model_name
        self.platform = 'gpt' if 'gpt' in model_name else 'gemini'
        self.api_key = os.getenv("OPEN_AI_API_KEY") if self.platform == "gpt" else os.getenv("GEMINI_API_KEY")
        if self.platform == "gpt":
            self.default_config = {
                "temperature": 1,
                "max_tokens": None,
            }
        elif self.platform == "gemini":
            self.default_config = {
                "temperature": 1,
                "top_p": 0.95,
                "top_k": 64,
                "max_output_tokens": 8192,
            }

    def create_model(self, model_name, cp_config):
        # redefine by model_name
        self.platform = 'gpt' if 'gpt' in model_name else 'gemini'
        self.api_key = os.getenv("OPEN_AI_API_KEY") if self.platform == "gpt" else os.getenv("GEMINI_API_KEY")
        if self.platform == "gpt":
            self.default_config = {
                "temperature": 1,
                "max_tokens": None,
            }
        elif self.platform == "gemini":
            self.default_config = {
                "temperature": 1,
                "top_p": 0.95,
                "top_k": 64,
                "max_output_tokens": None,
            }

        if self.platform == "gpt":
            return ChatOpenAI(
                model=model_name,
                api_key=self.api_key,
                temperature=cp_config["temperature"],
                max_tokens=cp_config.get("max_tokens")
            )
        elif self.platform == "gemini":
            return ChatGoogleGenerativeAI(
                model=model_name,
                google_api_key=self.api_key,
                temperature=cp_config["temperature"],
                top_p=cp_config.get("top_p"),
                top_k=cp_config.get("top_k"),
                max_output_tokens=cp_config.get("max_output_tokens")
            )

    def clean_response(self, response):
        if response.startswith("```") and response.endswith("```"):
            pattern = r'^(?:```json|```csv|```)\s*(.*?)\s*```$'
            return re.sub(pattern, r'\1', response, flags=re.DOTALL).strip()
        return response.strip()

    def execute(self, model_input, user_input, model_name="", temperature=0, prefix=None, infix=None, suffix=None, json_output=False):
        cp_config = copy.deepcopy(self.default_config)
        cp_config["temperature"] = temperature
        if model_name == "":
            model_name = self.model_name

        model = self.create_model(model_name, cp_config)

        full_prompt_parts = []

        if prefix:
            full_prompt_parts.append(prefix)
        if infix:
            full_prompt_parts.append(infix)
        full_prompt_parts.append(model_input)
        if suffix:
            full_prompt_parts.append(suffix)

        # Kết hợp các phần thành một chuỗi duy nhất
        full_prompt = "\n".join(full_prompt_parts)

        chat_template = ChatPromptTemplate.from_messages(
            [
                ("system", "{full_prompt}"),
                ("human", "{user_input}"),
            ]
        )

        if json_output:
            parser = SimpleJsonOutputParser()
        else:
            parser = StrOutputParser()

        run_chain = chat_template | model | parser

        map_args = {
            "full_prompt": full_prompt,
            "user_input": user_input,
        }
        response = run_chain.invoke(map_args)

        if json_output == False:
            # print('Yess')
            response = self.clean_response(response)

        # print("Nooo")

        return response

    def execute_with_image(self, model_input, user_input, base64_image, model_name="", temperature=0, prefix=None, infix=None, suffix=None, json_output=False):

        full_prompt_parts = []
        if prefix:
            full_prompt_parts.append(prefix)
        if infix:
            full_prompt_parts.append(infix)
        full_prompt_parts.append(model_input)
        if suffix:
            full_prompt_parts.append(suffix)

        # Kết hợp các phần thành một chuỗi duy nhất
        full_prompt = "\n".join(full_prompt_parts)


        prompt = ChatPromptTemplate.from_messages(
            [
                ("system", "{full_prompt}\n{user_input}"),
                (
                    "user",
                    [
                        {
                            "type": "image_url",
                            "image_url": {"url": "data:image/jpeg;base64,{image_data}"},
                        }
                    ],
                ),
            ]
        )

        cp_config = copy.deepcopy(self.default_config)
        cp_config["temperature"] = temperature
        if model_name == "":
            model_name = self.model_name

        model = self.create_model(model_name, cp_config)

        if json_output:
            parser = SimpleJsonOutputParser()
        else:
            parser = StrOutputParser()

        run_chain = prompt | model | parser

        response = run_chain.invoke({
            "image_data": base64_image,
            "full_prompt": full_prompt,
            "user_input": user_input
        })

        if json_output == False:
            # print('Yess')
            response = self.clean_response(response)

        # print("Nooo")

        return response

    def batch_execute(self, requests):
        """
        Execute multiple requests in parallel for both `execute` and `execute_with_image`.

        Args:
            requests (list of dict): List of requests, each containing `model_input`, `user_input`,
                                    and optionally `model_name`, `temperature`, and `base64_image`.

        Returns:
            list of str: List of responses for each request, mapped correctly to their input.
        """
        responses = [None] * len(requests)

        def process_request(index, request):
            model_input = request.get("model_input", "")
            user_input = request.get("user_input", "")
            prefix = request.get("prefix", None)
            infix = request.get("infix", None)
            suffix = request.get("suffix", None)
            model_name = request.get("model_name", self.model_name)
            temperature = request.get("temperature", 0)
            base64_image = request.get("base64_image", None)

            if base64_image:
                result = self.execute_with_image(model_input, user_input, base64_image, model_name, temperature, prefix, infix, suffix)
            else:
                result = self.execute(model_input, user_input, model_name, temperature, prefix, infix, suffix)

            responses[index] = result

        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = {executor.submit(process_request, i, request): i for i, request in enumerate(requests)}

            for future in concurrent.futures.as_completed(futures):
                index = futures[future]
                try:
                    future.result()
                except Exception as exc:
                    responses[index] = f"Exception occurred: {exc}"

        return responses