Spaces:
Runtime error
Runtime error
File size: 8,102 Bytes
11a26b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import pandas as pd
from langchain_community.document_loaders import TextLoader
from langchain_community.docstore.document import Document
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.retrievers import BM25Retriever
from langchain_community.llms import OpenAI
from langchain_openai import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.schema import AIMessage, HumanMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
import os
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
def split_with_source(text, source):
splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 400,
chunk_overlap = 0,
length_function = len,
add_start_index = True,
)
documents = splitter.create_documents([text])
# print(documents)
for doc in documents:
doc.metadata["source"] = source
# print(doc.metadata)
return documents
def get_document_from_raw_text_each_line():
documents = [Document(page_content="", metadata={'source': 0})]
files = os.listdir(os.path.join(os.getcwd(), "raw_data"))
# print(files)
for i in files:
file_path = i
with open(os.path.join(os.path.join(os.getcwd(), "raw_data"),file_path), 'r', encoding="utf-8") as file:
# Xử lý bằng text_spliter
# Tiền xử lý văn bản
content = file.readlines()
text = []
#Split
for line in content:
line = line.strip()
documents.append(Document(page_content=line, metadata={"source": i}))
return documents
def count_files_in_folder(folder_path):
# Kiểm tra xem đường dẫn thư mục có tồn tại không
if not os.path.isdir(folder_path):
print("Đường dẫn không hợp lệ.")
return None
# Sử dụng os.listdir() để lấy danh sách các tập tin và thư mục trong thư mục
files = os.listdir(folder_path)
# Đếm số lượng tập tin trong danh sách
file_count = len(files)
return file_count
def get_document_from_raw_text():
documents = [Document(page_content="", metadata={'source': 0})]
files = os.listdir(os.path.join(os.getcwd(), "raw_data"))
# print(files)
for i in files:
file_path = i
with open(os.path.join(os.path.join(os.getcwd(), "raw_data"),file_path), 'r', encoding="utf-8") as file:
# Xử lý bằng text_spliter
# Tiền xử lý văn bản
content = file.read().replace('\n\n', "\n")
# content = ''.join(content.split('.'))
new_doc = content
texts = split_with_source(new_doc, i)
# texts = get_document_from_raw_text_each_line()
documents = documents + texts
##Xử lý mỗi khi xuống dòng
# for line in file:
# # Loại bỏ khoảng trắng thừa và ký tự xuống dòng ở đầu và cuối mỗi dòng
# line = line.strip()
# documents.append(Document(page_content=line, metadata={"source": i}))
# print(documents)
return documents
def get_document_from_table():
documents = [Document(page_content="", metadata={'source': 0})]
files = os.listdir(os.path.join(os.getcwd(), "table_data"))
# print(files)
for i in files:
file_path = i
data = pd.read_csv(os.path.join(os.path.join(os.getcwd(), "table_data"),file_path))
for j, row in data.iterrows():
documents.append(Document(page_content=row['data'], metadata={"source": file_path}))
return documents
def load_the_embedding_retrieve(is_ready = False, k = 3, model= 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'):
embeddings = HuggingFaceEmbeddings(model_name=model)
if is_ready:
retriever = Chroma(persist_directory=os.path.join(os.getcwd(), "Data"), embedding_function=embeddings).as_retriever(
search_kwargs={"k": k}
)
else:
documents = get_document_from_raw_text() + get_document_from_table()
# print(type(documents))
retriever = Chroma.from_documents(documents, embeddings).as_retriever(
search_kwargs={"k": k}
)
return retriever
def load_the_bm25_retrieve(k = 3):
documents = get_document_from_raw_text() + get_document_from_table()
bm25_retriever = BM25Retriever.from_documents(documents)
bm25_retriever.k = k
return bm25_retriever
def load_the_parent_document_retrieve(model= 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'):
embeddings = HuggingFaceEmbeddings(model_name=model)
vectorstore = Chroma(
collection_name="split_parents", embedding_function=embeddings
)
store = InMemoryStore()
parent_splitter = RecursiveCharacterTextSplitter(
chunk_size=1200,
chunk_overlap=0,
length_function=len,
add_start_index=True, )
child_splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=0,
length_function=len,
add_start_index=True, )
retriever = ParentDocumentRetriever(
vectorstore=vectorstore,
docstore=store,
child_splitter=child_splitter,
parent_splitter=parent_splitter,
)
docs = get_document_from_raw_text()
retriever.add_documents(docs)
return retriever
def get_qachain(llm_name = "gpt-3.5-turbo-0125", chain_type = "stuff", retriever = None, return_source_documents = True):
llm = ChatOpenAI(temperature=0,
model_name=llm_name)
return RetrievalQA.from_chain_type(llm=llm,
chain_type=chain_type,
retriever=retriever,
return_source_documents=return_source_documents)
def summarize_messages(demo_ephemeral_chat_history, llm):
stored_messages = demo_ephemeral_chat_history.messages
human_chat = stored_messages[0].content
ai_chat = stored_messages[1].content
if len(stored_messages) == 0:
return False
summarization_prompt = ChatPromptTemplate.from_messages(
[
(
"system", os.environ['SUMARY_MESSAGE_PROMPT'],
),
(
"human",
'''
History:
Human: {human}
AI: {AI}
Output:
'''
)
,
]
)
summarization_chain = summarization_prompt | llm
summary_message = summarization_chain.invoke({"AI": ai_chat, "human": human_chat})
demo_ephemeral_chat_history.clear()
demo_ephemeral_chat_history.add_message(summary_message)
return demo_ephemeral_chat_history
def get_question_from_summarize(summary, question, llm):
new_qa_prompt = ChatPromptTemplate.from_messages([
("system", os.environ['NEW_QUESTION_PROMPT']),
("human",
'''
Summary: {summary}
Question: {question}
Output:
'''
)
]
)
new_qa_chain = new_qa_prompt | llm
return new_qa_chain.invoke({'summary': summary, 'question': question}).content
def get_final_answer(question, context, prompt, llm):
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", prompt),
("human", '''
Context: {context}
Question: {question}
Output: '''),
]
)
answer_chain = qa_prompt | llm
answer = answer_chain.invoke({'question': question, 'context': context})
return answer.content
def process_llm_response(llm_response):
print(llm_response['result'])
print('\n\nSources:')
for source in llm_response["source_documents"]:
print(source.metadata['source'])
|