ESPnet2-SLU / app.py
ssiidd's picture
Add grabo dataset to app
4967734
import gradio as gr
import soundfile
import time
import torch
import scipy.io.wavfile
from espnet2.bin.tts_inference import Text2Speech
from espnet2.utils.types import str_or_none
from espnet2.bin.asr_inference import Speech2Text
from subprocess import call
import os
from espnet_model_zoo.downloader import ModelDownloader
d = ModelDownloader()
tag="ftshijt/open_li52_asr_train_asr_raw_bpe7000_valid.acc.ave_10best"
a1= (d.download_and_unpack(tag))
# print(a1)
# exit()
with open('s3prl.sh', 'rb') as file:
script = file.read()
rc = call(script, shell=True)
import sys
sys.path.append(os.getcwd()+"/s3prl")
os.environ["PYTHONPATH"]=os.getcwd()+"/s3prl"
import fairseq
print(fairseq.__version__)
# exit()
# tagen = 'kan-bayashi/ljspeech_vits'
# vocoder_tagen = "none"
speech2text_slurp = Speech2Text.from_pretrained(
asr_train_config="slurp/config.yaml",
asr_model_file="slurp/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
nbest=1
)
speech2text_fsc = Speech2Text.from_pretrained(
asr_train_config="fsc/config.yaml",
asr_model_file="fsc/valid.acc.ave_5best.pth",
# Decoding parameters are not included in the model file
nbest=1
)
speech2text_snips = Speech2Text.from_pretrained(
asr_train_config="espnet-slu-snips/config.yaml",
asr_model_file="espnet-slu-snips/valid.acc.ave_10best.pth",
# Decoding parameters are not included in the model file
nbest=1
)
speech2text_catslu = Speech2Text.from_pretrained(
asr_train_config="catslu/config.yaml",
asr_model_file="catslu/valid.acc.ave_5best.pth",
# Decoding parameters are not included in the model file
nbest=1
)
speech2text_grabo = Speech2Text.from_pretrained(
asr_train_config="grabo/config.yaml",
asr_model_file="grabo/valid.acc.ave_10best.pth",
ctc_weight=0.0,
# Decoding parameters are not included in the model file
nbest=1
)
def inference(wav,data):
with torch.no_grad():
if data == "english_slurp":
speech, rate = soundfile.read(wav.name)
nbests = speech2text_slurp(speech)
text, *_ = nbests[0]
intent=text.split(" ")[0]
scenario=intent.split("_")[0]
action=intent.split("_")[1]
text="{scenario: "+scenario+", action: "+action+"}"
elif data == "english_fsc":
print(wav.name)
speech, rate = soundfile.read(wav.name)
print(speech.shape)
if len(speech.shape)==2:
speech=speech[:,0]
# soundfile.write("store_file.wav", speech, rate, subtype='FLOAT')
print(speech.shape)
nbests = speech2text_fsc(speech)
text, *_ = nbests[0]
intent=text.split(" ")[0]
action=intent.split("_")[0]
objects=intent.split("_")[1]
location=intent.split("_")[2]
text="{action: "+action+", object: "+objects+", location: "+location+"}"
elif data == "chinese":
print(wav.name)
speech, rate = soundfile.read(wav.name)
print(speech.shape)
if len(speech.shape)==2:
speech=speech[:,0]
# soundfile.write("store_file.wav", speech, rate, subtype='FLOAT')
print(speech.shape)
nbests = speech2text_catslu(speech)
text, *_ = nbests[0]
text=text.split(" ")[0]
# elif data == "english_snips":
# print(wav.name)
# speech, rate = soundfile.read(wav.name)
# nbests = speech2text_snips(speech)
# text, *_ = nbests[0]
elif data == "dutch":
print(wav.name)
speech, rate = soundfile.read(wav.name)
nbests = speech2text_grabo(speech)
text, *_ = nbests[0]
# intent=text.split(" ")[0]
# action=intent.split("_")[0]
# objects=intent.split("_")[1]
# location=intent.split("_")[2]
# text="{action: "+action+", object: "+objects+", location: "+location+"}"
# if lang == "chinese":
# wav = text2speechch(text)["wav"]
# scipy.io.wavfile.write("out.wav",text2speechch.fs , wav.view(-1).cpu().numpy())
# if lang == "japanese":
# wav = text2speechjp(text)["wav"]
# scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy())
return text
title = "ESPnet2-SLU"
description = "Gradio demo for ESPnet2-SLU: Advancing Spoken Language Understanding through ESPnet. To use it, simply record your audio or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/espnet/espnet' target='_blank'>Github Repo</a></p>"
examples=[['audio_slurp.flac',"english_slurp"],['audio_fsc.wav',"english_fsc"],['audio_grabo.wav',"dutch"],['audio_catslu.wav',"chinese"]]
# gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english"], type="value", default="english", label="language")
gr.Interface(
inference,
[gr.inputs.Audio(label="input audio",source = "microphone", type="file"),gr.inputs.Radio(choices=["english_slurp","english_fsc","dutch","chinese"], type="value", default="english_slurp", label="Dataset")],
gr.outputs.Textbox(type="str", label="Output"),
title=title,
description=description,
article=article,
enable_queue=True,
examples=examples
).launch(debug=True)