File size: 2,303 Bytes
9d2f477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# app.py
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer
from peft import AutoPeftModelForCausalLM
import torch
from typing import Optional

app = FastAPI(title="Gemma Script Generator API")

# Load model and tokenizer
MODEL_NAME = "Sidharthan/gemma2_scripter"

try:
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_NAME,
        trust_remote_code=True
    )
    model = AutoPeftModelForCausalLM.from_pretrained(
        MODEL_NAME,
        device_map="auto",  # Will use CPU if GPU not available
        trust_remote_code=True,
        #load_in_4bit=True
    )
except Exception as e:
    print(f"Error loading model: {str(e)}")
    raise

class GenerationRequest(BaseModel):
    message: str
    max_length: Optional[int] = 512
    temperature: Optional[float] = 0.7
    top_p: Optional[float] = 0.95
    top_k: Optional[int] = 50
    repetition_penalty: Optional[float] = 1.2

class GenerationResponse(BaseModel):
    generated_text: str

@app.post("/generate", response_model=GenerationResponse)
async def generate_script(request: GenerationRequest):
    try:
        # Format prompt
        prompt = request.message
        # Tokenize input
        inputs = tokenizer(prompt, return_tensors="pt")
        if torch.cuda.is_available():
            inputs = {k: v.cuda() for k, v in inputs.items()}
            
        # Generate
        outputs = model.generate(
            **inputs,
            max_length=request.max_length,
            do_sample=True,
            temperature=request.temperature,
            top_p=request.top_p,
            top_k=request.top_k,
            repetition_penalty=request.repetition_penalty,
            num_return_sequences=1,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
        
        # Decode output
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return GenerationResponse(generated_text=generated_text)
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    return {"status": "healthy"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)