Sifal's picture
Update app.py
7c3ed50 verified
import os
import logging
import time
import traceback
import gradio as gr
import torch
from utils.inference_utils import preprocess_image, predict
from utils.train_utils import initialize_model
from utils.data import CLASS_NAMES
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('pokemon_classifier.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
def setup_model():
"""
Initialize and load the model with comprehensive error handling.
Returns:
torch.nn.Module: Loaded and prepared model
"""
try:
# Configure model parameters
model_name = "resnet"
model_weights = "./pokemon_resnet.pth"
num_classes = 150
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Log device information
logger.info(f"Using device: {device}")
# Validate model weights file exists
if not os.path.exists(model_weights):
raise FileNotFoundError(f"Model weights file not found: {model_weights}")
# Initialize and load model
start_time = time.time()
model = initialize_model(model_name, num_classes).to(device)
model.load_state_dict(torch.load(model_weights, map_location=device))
model.eval() # Set the model to evaluation mode
logger.info(f"Model initialization completed in {time.time() - start_time:.2f} seconds")
return model, device
except Exception as e:
logger.error(f"Model initialization failed: {e}")
logger.error(traceback.format_exc())
raise
def classify_image(image, model, device):
"""
Classify an uploaded image with comprehensive error handling and logging.
Args:
image (PIL.Image): Uploaded image
model (torch.nn.Module): Loaded model
device (torch.device): Computation device
Returns:
str: Prediction result or error message
"""
if image is None:
return "No image uploaded"
try:
start_time = time.time()
# Preprocess image
logger.info('Preprocessing image...')
image_tensor = preprocess_image(image, (224, 224)).to(device)
# Perform inference
logger.info('Running inference...')
with torch.no_grad(): # Disable gradient computation for inference
preds = torch.max(predict(model, image_tensor), 1)[1]
predicted_class = CLASS_NAMES[preds.item()]
# Log performance metrics
inference_time = time.time() - start_time
logger.info(f"Image classification completed in {inference_time:.4f} seconds")
logger.info(f"Predicted class: {predicted_class}")
return f"Predicted class: {predicted_class}"
except Exception as e:
logger.error(f"Classification error: {e}")
logger.error(traceback.format_exc())
return f"Error processing image: {str(e)}"
def create_gradio_app():
"""
Create and configure the Gradio interface.
Returns:
gr.Interface: Configured Gradio interface
"""
try:
# Initialize model once
model, device = setup_model()
# Create a wrapper function that includes the model and device
def classify_wrapper(image):
return classify_image(image, model, device)
demo = gr.Interface(
fn=classify_wrapper,
inputs=gr.components.Image(type="pil", label="Upload Pokemon Image"),
outputs=gr.components.Textbox(label="Prediction"),
title="Pokemon Classifier",
description="Upload an image of a Pokemon, and the model will predict its class.",
allow_flagging="never" # Disable flagging to simplify UI
)
return demo
except Exception as e:
logger.critical(f"Failed to create Gradio app: {e}")
logger.critical(traceback.format_exc())
raise
def main():
try:
demo = create_gradio_app()
demo.launch(
server_name="0.0.0.0", # Important for Docker
server_port=7860, # Standard Hugging Face Spaces port
share=False
)
except Exception as e:
logger.critical(f"Application launch failed: {e}")
logger.critical(traceback.format_exc())
if __name__ == "__main__":
main()