Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from utils.inference_utils import preprocess_image, predict
|
4 |
+
from utils.train_utils import initialize_model
|
5 |
+
from utils.data import CLASS_NAMES
|
6 |
+
|
7 |
+
# Load the model once during app initialization
|
8 |
+
model_name = "resnet"
|
9 |
+
model_weights = "./pokemon_resnet.pth"
|
10 |
+
num_classes = 150
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
|
13 |
+
# Initialize and load the model
|
14 |
+
model = initialize_model(model_name, num_classes).to(device)
|
15 |
+
model.load_state_dict(torch.load(model_weights, map_location=device))
|
16 |
+
model.eval() # Set the model to evaluation mode
|
17 |
+
|
18 |
+
|
19 |
+
def classify_image(image):
|
20 |
+
"""Function to preprocess the image and classify it."""
|
21 |
+
try:
|
22 |
+
# Preprocess the uploaded image
|
23 |
+
image_tensor = preprocess_image(image, (224, 224)).to(device)
|
24 |
+
|
25 |
+
# Perform inference
|
26 |
+
preds = torch.max(predict(model, image_tensor), 1)[1]
|
27 |
+
predicted_class = CLASS_NAMES[preds.item()]
|
28 |
+
|
29 |
+
return f"Predicted class: {predicted_class}"
|
30 |
+
|
31 |
+
except Exception as e:
|
32 |
+
return f"Error: {str(e)}"
|
33 |
+
|
34 |
+
|
35 |
+
# Create a Gradio interface
|
36 |
+
demo = gr.Interface(
|
37 |
+
fn=classify_image,
|
38 |
+
inputs=gr.inputs.Image(type="pil", label="Upload Image"),
|
39 |
+
outputs="text",
|
40 |
+
title="Pokemon Classifier",
|
41 |
+
description="Upload an image of a Pokemon, and the model will predict its class.",
|
42 |
+
)
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
# Launch the Gradio app
|
46 |
+
demo.launch()
|