VLegio's picture
Update app.py
b0f95bc
import gradio as gr
import gc, copy, re
from huggingface_hub import hf_hub_download
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
ctx_limit = 2048
title = "ru_rwkv5_extract_qa_04B_65536_ctx8192_L24_D1024.pth"
model_path = hf_hub_download(repo_id="Sigma-AI/ru_rwkv5_extract_qa", filename=f"{title}")
model = RWKV(model=model_path, strategy='cpu bf16')
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")
def generate_prompt(context, question):
context = context.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
question = question.strip().replace('\r\n','\n').replace('\n\n','\n').replace('\n\n','\n')
return f"""CONTEXT:{context}
QUESTION:{question}
ANSWER:"""
examples = [
["Вторая мировая война (началась 01.09.1939 и закончилась 02.09.1945) — война двух мировых военно-политических коалиций, ставшая крупнейшим вооружённым конфликтом в истории человечества.В ней участвовали 62 государства из 74 существовавших на тот момент (80 % населения Земного шара).\nБоевые действия велись на территории Европы, Азии и Африки и в водах всех океанов. Это единственный конфликт, в котором было применено ядерное оружие. В результате войны погибло более 70 миллионов человек, из которых большинство — мирные жители.Число участвовавших стран менялось в течение войны. Некоторые из них вели активные военные действия, другие помогали Союзникам поставками продовольствия, а многие участвовали в войне только номинально.", "Было ли применено ядерное оружие?", 300, 1, 0.5, 0.4, 0.4],
]
def evaluate(
instruction,
input=None,
token_count=200,
temperature=1.0,
top_p=0.5,
presencePenalty = 0.4,
countPenalty = 0.4,
):
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
alpha_frequency = countPenalty,
alpha_presence = presencePenalty,
token_ban = [], # ban the generation of some tokens
token_stop = [0]) # stop generation whenever you see any token here
instruction = re.sub(r'\n{2,}', '\n', instruction).strip().replace('\r\n','\n')
input = re.sub(r'\n{2,}', '\n', input).strip().replace('\r\n','\n')
ctx = generate_prompt(instruction, input)
all_tokens = []
out_last = 0
out_str = ''
occurrence = {}
state = None
for i in range(int(token_count)):
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
tmp = pipeline.decode(all_tokens[out_last:])
if '\ufffd' not in tmp:
out_str += tmp
yield out_str.strip()
out_last = i + 1
if '\n\n' in out_str:
break
del out
del state
gc.collect()
yield out_str.strip()
def user(message, chatbot):
chatbot = chatbot or []
return "", chatbot + [[message, None]]
def alternative(chatbot, history):
if not chatbot or not history:
return chatbot, history
chatbot[-1][1] = None
history[0] = copy.deepcopy(history[1])
return chatbot, history
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🌍World - {title}</h1>\n</div>")
with gr.Tab("Extract QA"):
gr.Markdown(f"100% RNN RWKV-LM **trained on 100+ world languages**. Demo limited to ctxlen {ctx_limit}")
with gr.Row():
with gr.Column():
context = gr.Textbox(lines=2, label="Context", value='')
question = gr.Textbox(lines=2, label="Question", placeholder="")
token_count = gr.Slider(10, 300, label="Max Tokens", step=10, value=300)
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear", variant="secondary")
output = gr.Textbox(label="Output", lines=5)
data = gr.Dataset(components=[context, question, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example", headers=["Context", "Question", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
submit.click(evaluate, [context, question, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
clear.click(lambda: None, [], [output])
data.click(lambda x: x, [data], [context, question, token_count, temperature, top_p, presence_penalty, count_penalty])
demo.queue(max_size=10)
demo.launch(share=False)