Spaces:
Runtime error
Runtime error
File size: 10,349 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import math
import os
from typing import List
import PIL.Image
import numpy
import torch
from matplotlib import cm
from torch import Tensor
def is_power2(x):
return x != 0 and ((x & (x - 1)) == 0)
def numpy_srgb_to_linear(x):
x = numpy.clip(x, 0.0, 1.0)
return numpy.where(x <= 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
def numpy_linear_to_srgb(x):
x = numpy.clip(x, 0.0, 1.0)
return numpy.where(x <= 0.003130804953560372, x * 12.92, 1.055 * (x ** (1.0 / 2.4)) - 0.055)
def torch_srgb_to_linear(x: torch.Tensor):
x = torch.clip(x, 0.0, 1.0)
return torch.where(torch.le(x, 0.04045), x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
def torch_linear_to_srgb(x):
x = torch.clip(x, 0.0, 1.0)
return torch.where(torch.le(x, 0.003130804953560372), x * 12.92, 1.055 * (x ** (1.0 / 2.4)) - 0.055)
def image_linear_to_srgb(image):
assert image.shape[2] == 3 or image.shape[2] == 4
if image.shape[2] == 3:
return numpy_linear_to_srgb(image)
else:
height, width, _ = image.shape
rgb_image = numpy_linear_to_srgb(image[:, :, 0:3])
a_image = image[:, :, 3:4]
return numpy.concatenate((rgb_image, a_image), axis=2)
def image_srgb_to_linear(image):
assert image.shape[2] == 3 or image.shape[2] == 4
if image.shape[2] == 3:
return numpy_srgb_to_linear(image)
else:
height, width, _ = image.shape
rgb_image = numpy_srgb_to_linear(image[:, :, 0:3])
a_image = image[:, :, 3:4]
return numpy.concatenate((rgb_image, a_image), axis=2)
def save_rng_state(file_name):
rng_state = torch.get_rng_state()
torch_save(rng_state, file_name)
def load_rng_state(file_name):
rng_state = torch_load(file_name)
torch.set_rng_state(rng_state)
def grid_change_to_numpy_image(torch_image, num_channels=3):
height = torch_image.shape[1]
width = torch_image.shape[2]
size_image = (torch_image[0, :, :] ** 2 + torch_image[1, :, :] ** 2).sqrt().view(height, width, 1).numpy()
hsv = cm.get_cmap('hsv')
angle_image = hsv(((torch.atan2(
torch_image[0, :, :].view(height * width),
torch_image[1, :, :].view(height * width)).view(height, width) + math.pi) / (2 * math.pi)).numpy()) * 3
numpy_image = size_image * angle_image[:, :, 0:3]
rgb_image = numpy_linear_to_srgb(numpy_image)
if num_channels == 3:
return rgb_image
elif num_channels == 4:
return numpy.concatenate([rgb_image, numpy.ones_like(size_image)], axis=2)
else:
raise RuntimeError("Unsupported num_channels: " + str(num_channels))
def rgb_to_numpy_image(torch_image: Tensor, min_pixel_value=-1.0, max_pixel_value=1.0):
assert torch_image.dim() == 3
assert torch_image.shape[0] == 3
height = torch_image.shape[1]
width = torch_image.shape[2]
reshaped_image = torch_image.numpy().reshape(3, height * width).transpose().reshape(height, width, 3)
numpy_image = (reshaped_image - min_pixel_value) / (max_pixel_value - min_pixel_value)
return numpy_linear_to_srgb(numpy_image)
def rgba_to_numpy_image_greenscreen(torch_image: Tensor,
min_pixel_value=-1.0,
max_pixel_value=1.0,
include_alpha=False):
height = torch_image.shape[1]
width = torch_image.shape[2]
numpy_image = (torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width,
4) - min_pixel_value) \
/ (max_pixel_value - min_pixel_value)
rgb_image = numpy_linear_to_srgb(numpy_image[:, :, 0:3])
a_image = numpy_image[:, :, 3]
rgb_image[:, :, 0:3] = rgb_image[:, :, 0:3] * a_image.reshape(a_image.shape[0], a_image.shape[1], 1)
rgb_image[:, :, 1] = rgb_image[:, :, 1] + (1 - a_image)
if not include_alpha:
return rgb_image
else:
return numpy.concatenate((rgb_image, numpy.ones_like(numpy_image[:, :, 3:4])), axis=2)
def rgba_to_numpy_image(torch_image: Tensor, min_pixel_value=-1.0, max_pixel_value=1.0):
assert torch_image.dim() == 3
assert torch_image.shape[0] == 4
height = torch_image.shape[1]
width = torch_image.shape[2]
reshaped_image = torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width, 4)
numpy_image = (reshaped_image - min_pixel_value) / (max_pixel_value - min_pixel_value)
rgb_image = numpy_linear_to_srgb(numpy_image[:, :, 0:3])
a_image = numpy.clip(numpy_image[:, :, 3], 0.0, 1.0)
rgba_image = numpy.concatenate((rgb_image, a_image.reshape(height, width, 1)), axis=2)
return rgba_image
def extract_numpy_image_from_filelike_with_pytorch_layout(file, has_alpha=True, scale=2.0, offset=-1.0):
try:
pil_image = PIL.Image.open(file)
except Exception as e:
raise RuntimeError(file)
return extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset)
def extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha=True, scale=2.0, offset=-1.0):
if has_alpha:
num_channel = 4
else:
num_channel = 3
image_size = pil_image.width
# search for transparent pixels(alpha==0) and change them to [0 0 0 0] to avoid the color influence to the model
for i, px in enumerate(pil_image.getdata()):
if px[3] <= 0:
y = i // image_size
x = i % image_size
pil_image.putpixel((x, y), (0, 0, 0, 0))
raw_image = numpy.asarray(pil_image)
image = (raw_image / 255.0).reshape(image_size, image_size, num_channel)
image[:, :, 0:3] = numpy_srgb_to_linear(image[:, :, 0:3])
image = image \
.reshape(image_size * image_size, num_channel) \
.transpose() \
.reshape(num_channel, image_size, image_size) * scale + offset
return image
def extract_pytorch_image_from_filelike(file, has_alpha=True, scale=2.0, offset=-1.0):
try:
pil_image = PIL.Image.open(file)
except Exception as e:
raise RuntimeError(file)
image = extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset)
return torch.from_numpy(image).float()
def extract_pytorch_image_from_PIL_image(pil_image, has_alpha=True, scale=2.0, offset=-1.0):
image = extract_numpy_image_from_PIL_image_with_pytorch_layout(pil_image, has_alpha, scale, offset)
return torch.from_numpy(image).float()
def extract_numpy_image_from_filelike(file):
pil_image = PIL.Image.open(file)
image_width = pil_image.width
image_height = pil_image.height
if pil_image.mode == "RGBA":
image = (numpy.asarray(pil_image) / 255.0).reshape(image_height, image_width, 4)
else:
image = (numpy.asarray(pil_image) / 255.0).reshape(image_height, image_width, 3)
image[:, :, 0:3] = numpy_srgb_to_linear(image[:, :, 0:3])
return image
def convert_avs_to_avi(avs_file, avi_file):
os.makedirs(os.path.dirname(avi_file), exist_ok=True)
file = open("temp.vdub", "w")
file.write("VirtualDub.Open(\"%s\");" % avs_file)
file.write("VirtualDub.video.SetCompression(\"cvid\", 0, 10000, 0);")
file.write("VirtualDub.SaveAVI(\"%s\");" % avi_file)
file.write("VirtualDub.Close();")
file.close()
os.system("C:\\ProgramData\\chocolatey\\lib\\virtualdub\\tools\\vdub64.exe /i temp.vdub")
os.remove("temp.vdub")
def convert_avi_to_mp4(avi_file, mp4_file):
os.makedirs(os.path.dirname(mp4_file), exist_ok=True)
os.system("ffmpeg -y -i %s -c:v libx264 -preset slow -crf 22 -c:a libfaac -b:a 128k %s" % \
(avi_file, mp4_file))
def convert_avi_to_webm(avi_file, webm_file):
os.makedirs(os.path.dirname(webm_file), exist_ok=True)
os.system("ffmpeg -y -i %s -vcodec libvpx -qmin 0 -qmax 50 -crf 10 -b:v 1M -acodec libvorbis %s" % \
(avi_file, webm_file))
def convert_mp4_to_webm(mp4_file, webm_file):
os.makedirs(os.path.dirname(webm_file), exist_ok=True)
os.system("ffmpeg -y -i %s -vcodec libvpx -qmin 0 -qmax 50 -crf 10 -b:v 1M -acodec libvorbis %s" % \
(mp4_file, webm_file))
def create_parent_dir(file_name):
os.makedirs(os.path.dirname(file_name), exist_ok=True)
def run_command(command_parts: List[str]):
command = " ".join(command_parts)
os.system(command)
def save_pytorch_image(image, file_name):
if image.shape[0] == 1:
image = image.squeeze()
if image.shape[0] == 4:
numpy_image = rgba_to_numpy_image(image.detach().cpu())
pil_image = PIL.Image.fromarray(numpy.uint8(numpy.rint(numpy_image * 255.0)), mode='RGBA')
else:
numpy_image = rgb_to_numpy_image(image.detach().cpu())
pil_image = PIL.Image.fromarray(numpy.uint8(numpy.rint(numpy_image * 255.0)), mode='RGB')
os.makedirs(os.path.dirname(file_name), exist_ok=True)
pil_image.save(file_name)
def torch_load(file_name):
with open(file_name, 'rb') as f:
return torch.load(f)
def torch_save(content, file_name):
os.makedirs(os.path.dirname(file_name), exist_ok=True)
with open(file_name, 'wb') as f:
torch.save(content, f)
def resize_PIL_image(pil_image, size=(256, 256)):
w, h = pil_image.size
d = min(w, h)
r = ((w - d) // 2, (h - d) // 2, (w + d) // 2, (h + d) // 2)
return pil_image.resize(size, resample=PIL.Image.LANCZOS, box=r)
def extract_PIL_image_from_filelike(file):
return PIL.Image.open(file)
def convert_output_image_from_torch_to_numpy(output_image):
if output_image.shape[2] == 2:
h, w, c = output_image.shape
output_image = torch.transpose(output_image.reshape(h * w, c), 0, 1).reshape(c, h, w)
if output_image.shape[0] == 4:
numpy_image = rgba_to_numpy_image(output_image)
elif output_image.shape[0] == 1:
c, h, w = output_image.shape
alpha_image = torch.cat([output_image.repeat(3, 1, 1) * 2.0 - 1.0, torch.ones(1, h, w)], dim=0)
numpy_image = rgba_to_numpy_image(alpha_image)
elif output_image.shape[0] == 2:
numpy_image = grid_change_to_numpy_image(output_image, num_channels=4)
else:
raise RuntimeError("Unsupported # image channels: %d" % output_image.shape[0])
return numpy_image
|