Spaces:
Runtime error
Runtime error
import argparse | |
import ast | |
import os | |
import random | |
import sys | |
import threading | |
import time | |
import torch | |
import io | |
import torch.nn.functional as F | |
import wx | |
import numpy as np | |
import json | |
from PIL import Image | |
from torchvision import transforms | |
from flask import Flask, Response | |
from flask_cors import CORS | |
from io import BytesIO | |
sys.path.append(os.getcwd()) | |
from tha3.mocap.ifacialmocap_constants import * | |
from tha3.mocap.ifacialmocap_pose import create_default_ifacialmocap_pose | |
from tha3.mocap.ifacialmocap_pose_converter import IFacialMocapPoseConverter | |
from tha3.mocap.ifacialmocap_poser_converter_25 import create_ifacialmocap_pose_converter | |
from tha3.poser.modes.load_poser import load_poser | |
from tha3.poser.poser import Poser | |
from tha3.util import ( | |
torch_linear_to_srgb, resize_PIL_image, extract_PIL_image_from_filelike, | |
extract_pytorch_image_from_PIL_image | |
) | |
from typing import Optional | |
# Global Variables | |
global_source_image = None | |
global_result_image = None | |
global_reload = None | |
is_talking_override = False | |
is_talking = False | |
global_timer_paused = False | |
emotion = "neutral" | |
lasttranisitiondPose = "NotInit" | |
inMotion = False | |
fps = 0 | |
current_pose = None | |
storepath = os.path.join(os.getcwd(), "talkinghead", "emotions") | |
# Flask setup | |
app = Flask(__name__) | |
CORS(app) | |
def setEmotion(_emotion): | |
global emotion | |
highest_score = float('-inf') | |
highest_label = None | |
for item in _emotion: | |
if item['score'] > highest_score: | |
highest_score = item['score'] | |
highest_label = item['label'] | |
#print("Applying ", emotion) | |
emotion = highest_label | |
def unload(): | |
global global_timer_paused | |
global_timer_paused = True | |
return "Animation Paused" | |
def start_talking(): | |
global is_talking_override | |
is_talking_override = True | |
return "started" | |
def stop_talking(): | |
global is_talking_override | |
is_talking_override = False | |
return "stopped" | |
def result_feed(): | |
def generate(): | |
while True: | |
if global_result_image is not None: | |
try: | |
rgb_image = global_result_image[:, :, [2, 1, 0]] # Swap B and R channels | |
pil_image = Image.fromarray(np.uint8(rgb_image)) # Convert to PIL Image | |
if global_result_image.shape[2] == 4: # Check if there is an alpha channel present | |
alpha_channel = global_result_image[:, :, 3] # Extract alpha channel | |
pil_image.putalpha(Image.fromarray(np.uint8(alpha_channel))) # Set alpha channel in the PIL Image | |
buffer = io.BytesIO() # Save as PNG with RGBA mode | |
pil_image.save(buffer, format='PNG') | |
image_bytes = buffer.getvalue() | |
except Exception as e: | |
print(f"Error when trying to write image: {e}") | |
yield (b'--frame\r\n' # Send the PNG image | |
b'Content-Type: image/png\r\n\r\n' + image_bytes + b'\r\n') | |
else: | |
time.sleep(0.1) | |
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame') | |
def talkinghead_load_file(stream): | |
global global_source_image | |
global global_reload | |
global global_timer_paused | |
global_timer_paused = False | |
try: | |
pil_image = Image.open(stream) # Load the image using PIL.Image.open | |
img_data = BytesIO() # Create a copy of the image data in memory using BytesIO | |
pil_image.save(img_data, format='PNG') | |
global_reload = Image.open(BytesIO(img_data.getvalue())) # Set the global_reload to the copy of the image data | |
except Image.UnidentifiedImageError: | |
print(f"Could not load image from file, loading blank") | |
full_path = os.path.join(os.getcwd(), os.path.normpath("talkinghead\\tha3\\images\\inital.png")) | |
MainFrame.load_image(None, full_path) | |
global_timer_paused = True | |
return 'OK' | |
def convert_linear_to_srgb(image: torch.Tensor) -> torch.Tensor: | |
rgb_image = torch_linear_to_srgb(image[0:3, :, :]) | |
return torch.cat([rgb_image, image[3:4, :, :]], dim=0) | |
def launch_gui(device, model): | |
global initAMI | |
initAMI = True | |
parser = argparse.ArgumentParser(description='uWu Waifu') | |
# Add other parser arguments here | |
args, unknown = parser.parse_known_args() | |
try: | |
poser = load_poser(model, device) | |
pose_converter = create_ifacialmocap_pose_converter() #creates a list of 45 | |
app = wx.App(redirect=False) | |
main_frame = MainFrame(poser, pose_converter, device) | |
main_frame.SetSize((750, 600)) | |
#Lload default image (you can pass args.char if required) | |
full_path = os.path.join(os.getcwd(), os.path.normpath("talkinghead\\tha3\\images\\inital.png")) | |
main_frame.load_image(None, full_path) | |
#main_frame.Show(True) | |
main_frame.capture_timer.Start(100) | |
main_frame.animation_timer.Start(100) | |
wx.DisableAsserts() #prevent popup about debug alert closed from other threads | |
app.MainLoop() | |
except RuntimeError as e: | |
print(e) | |
sys.exit() | |
class FpsStatistics: | |
def __init__(self): | |
self.count = 100 | |
self.fps = [] | |
def add_fps(self, fps): | |
self.fps.append(fps) | |
while len(self.fps) > self.count: | |
del self.fps[0] | |
def get_average_fps(self): | |
if len(self.fps) == 0: | |
return 0.0 | |
else: | |
return sum(self.fps) / len(self.fps) | |
class MainFrame(wx.Frame): | |
def __init__(self, poser: Poser, pose_converter: IFacialMocapPoseConverter, device: torch.device): | |
super().__init__(None, wx.ID_ANY, "uWu Waifu") | |
self.pose_converter = pose_converter | |
self.poser = poser | |
self.device = device | |
self.last_blink_timestamp = 0 | |
self.is_blinked = False | |
self.targets = {"head_y_index": 0} | |
self.progress = {"head_y_index": 0} | |
self.direction = {"head_y_index": 1} | |
self.originals = {"head_y_index": 0} | |
self.forward = {"head_y_index": True} # Direction of interpolation | |
self.start_values = {"head_y_index": 0} | |
self.fps_statistics = FpsStatistics() | |
self.image_load_counter = 0 | |
self.custom_background_image = None # Add this line | |
self.sliders = {} | |
self.ifacialmocap_pose = create_default_ifacialmocap_pose() | |
self.source_image_bitmap = wx.Bitmap(self.poser.get_image_size(), self.poser.get_image_size()) | |
self.result_image_bitmap = wx.Bitmap(self.poser.get_image_size(), self.poser.get_image_size()) | |
self.wx_source_image = None | |
self.torch_source_image = None | |
self.last_update_time = None | |
self.create_ui() | |
self.create_timers() | |
self.Bind(wx.EVT_CLOSE, self.on_close) | |
self.update_source_image_bitmap() | |
self.update_result_image_bitmap() | |
def create_timers(self): | |
self.capture_timer = wx.Timer(self, wx.ID_ANY) | |
self.Bind(wx.EVT_TIMER, self.update_capture_panel, id=self.capture_timer.GetId()) | |
self.animation_timer = wx.Timer(self, wx.ID_ANY) | |
self.Bind(wx.EVT_TIMER, self.update_result_image_bitmap, id=self.animation_timer.GetId()) | |
def on_close(self, event: wx.Event): | |
# Stop the timers | |
self.animation_timer.Stop() | |
self.capture_timer.Stop() | |
# Destroy the windows | |
self.Destroy() | |
event.Skip() | |
sys.exit(0) | |
def random_generate_value(self, min, max, origin_value): | |
random_value = random.choice(list(range(min, max, 1))) / 2500.0 | |
randomized = origin_value + random_value | |
if randomized > 1.0: | |
randomized = 1.0 | |
if randomized < 0: | |
randomized = 0 | |
return randomized | |
def animationTalking(self): | |
global is_talking | |
current_pose = self.ifacialmocap_pose | |
# NOTE: randomize mouth | |
for blendshape_name in BLENDSHAPE_NAMES: | |
if "jawOpen" in blendshape_name: | |
if is_talking or is_talking_override: | |
current_pose[blendshape_name] = self.random_generate_value(-5000, 5000, abs(1 - current_pose[blendshape_name])) | |
else: | |
current_pose[blendshape_name] = 0 | |
return current_pose | |
def animationHeadMove(self): | |
current_pose = self.ifacialmocap_pose | |
for key in [HEAD_BONE_Y]: #can add more to this list if needed | |
current_pose[key] = self.random_generate_value(-20, 20, current_pose[key]) | |
return current_pose | |
def animationBlink(self): | |
current_pose = self.ifacialmocap_pose | |
if random.random() <= 0.03: | |
current_pose["eyeBlinkRight"] = 1 | |
current_pose["eyeBlinkLeft"] = 1 | |
else: | |
current_pose["eyeBlinkRight"] = 0 | |
current_pose["eyeBlinkLeft"] = 0 | |
return current_pose | |
def addNamestoConvert(pose): | |
index_to_name = { | |
0: 'eyebrow_troubled_left_index', #COMBACK TO UNK | |
1: 'eyebrow_troubled_right_index',#COMBACK TO UNK | |
2: 'eyebrow_angry_left_index', | |
3: 'eyebrow_angry_right_index', | |
4: 'unknown1', #COMBACK TO UNK | |
5: 'unknown2', #COMBACK TO UNK | |
6: 'eyebrow_raised_left_index', | |
7: 'eyebrow_raised_right_index', | |
8: 'eyebrow_happy_left_index', | |
9: 'eyebrow_happy_right_index', | |
10: 'unknown3', #COMBACK TO UNK | |
11: 'unknown4', #COMBACK TO UNK | |
12: 'wink_left_index', | |
13: 'wink_right_index', | |
14: 'eye_happy_wink_left_index', | |
15: 'eye_happy_wink_right_index', | |
16: 'eye_surprised_left_index', | |
17: 'eye_surprised_right_index', | |
18: 'unknown5', #COMBACK TO UNK | |
19: 'unknown6', #COMBACK TO UNK | |
20: 'unknown7', #COMBACK TO UNK | |
21: 'unknown8', #COMBACK TO UNK | |
22: 'eye_raised_lower_eyelid_left_index', | |
23: 'eye_raised_lower_eyelid_right_index', | |
24: 'iris_small_left_index', | |
25: 'iris_small_right_index', | |
26: 'mouth_aaa_index', | |
27: 'mouth_iii_index', | |
28: 'mouth_ooo_index', | |
29: 'unknown9a', #COMBACK TO UNK | |
30: 'mouth_ooo_index2', | |
31: 'unknown9', #COMBACK TO UNK | |
32: 'unknown10', #COMBACK TO UNK | |
33: 'unknown11', #COMBACK TO UNK | |
34: 'mouth_raised_corner_left_index', | |
35: 'mouth_raised_corner_right_index', | |
36: 'unknown12', | |
37: 'iris_rotation_x_index', | |
38: 'iris_rotation_y_index', | |
39: 'head_x_index', | |
40: 'head_y_index', | |
41: 'neck_z_index', | |
42: 'body_y_index', | |
43: 'body_z_index', | |
44: 'breathing_index' | |
} | |
output = [] | |
for index, value in enumerate(pose): | |
name = index_to_name.get(index, "Unknown") | |
output.append(f"{name}: {value}") | |
return output | |
def get_emotion_values(self, emotion): # Place to define emotion presets | |
global storepath | |
#print(emotion) | |
file_path = os.path.join(storepath, emotion + ".json") | |
#print("trying: ", file_path) | |
if not os.path.exists(file_path): | |
print("using backup for: ", file_path) | |
file_path = os.path.join(storepath, "_defaults.json") | |
with open(file_path, 'r') as json_file: | |
emotions = json.load(json_file) | |
targetpose = emotions.get(emotion, {}) | |
targetpose_values = targetpose | |
#targetpose_values = list(targetpose.values()) | |
#print("targetpose: ", targetpose, "for ", emotion) | |
return targetpose_values | |
def animateToEmotion(self, current_pose_list, target_pose_dict): | |
transitionPose = [] | |
# Loop through the current_pose_list | |
for item in current_pose_list: | |
index, value = item.split(': ') | |
# Always take the value from target_pose_dict if the key exists | |
if index in target_pose_dict and index != "breathing_index": | |
transitionPose.append(f"{index}: {target_pose_dict[index]}") | |
else: | |
transitionPose.append(item) | |
# Ensure that the number of elements in transitionPose matches with current_pose_list | |
assert len(transitionPose) == len(current_pose_list) | |
return transitionPose | |
def animationMain(self): | |
self.ifacialmocap_pose = self.animationBlink() | |
self.ifacialmocap_pose = self.animationHeadMove() | |
self.ifacialmocap_pose = self.animationTalking() | |
return self.ifacialmocap_pose | |
def filter_by_index(self, current_pose_list, index): | |
# Create an empty list to store the filtered dictionaries | |
filtered_list = [] | |
# Iterate through each dictionary in the current_pose_list | |
for pose_dict in current_pose_list: | |
# Check if the 'breathing_index' key exists in the dictionary | |
if index in pose_dict: | |
# If the key exists, append the dictionary to the filtered list | |
filtered_list.append(pose_dict) | |
return filtered_list | |
def on_erase_background(self, event: wx.Event): | |
pass | |
def create_animation_panel(self, parent): | |
self.animation_panel = wx.Panel(parent, style=wx.RAISED_BORDER) | |
self.animation_panel_sizer = wx.BoxSizer(wx.HORIZONTAL) | |
self.animation_panel.SetSizer(self.animation_panel_sizer) | |
self.animation_panel.SetAutoLayout(1) | |
image_size = self.poser.get_image_size() | |
# Left Column (Image) | |
self.animation_left_panel = wx.Panel(self.animation_panel, style=wx.SIMPLE_BORDER) | |
self.animation_left_panel_sizer = wx.BoxSizer(wx.VERTICAL) | |
self.animation_left_panel.SetSizer(self.animation_left_panel_sizer) | |
self.animation_left_panel.SetAutoLayout(1) | |
self.animation_panel_sizer.Add(self.animation_left_panel, 1, wx.EXPAND) | |
self.result_image_panel = wx.Panel(self.animation_left_panel, size=(image_size, image_size), | |
style=wx.SIMPLE_BORDER) | |
self.result_image_panel.Bind(wx.EVT_PAINT, self.paint_result_image_panel) | |
self.result_image_panel.Bind(wx.EVT_ERASE_BACKGROUND, self.on_erase_background) | |
self.result_image_panel.Bind(wx.EVT_LEFT_DOWN, self.load_image) | |
self.animation_left_panel_sizer.Add(self.result_image_panel, 1, wx.EXPAND) | |
separator = wx.StaticLine(self.animation_left_panel, -1, size=(256, 1)) | |
self.animation_left_panel_sizer.Add(separator, 0, wx.EXPAND) | |
self.fps_text = wx.StaticText(self.animation_left_panel, label="") | |
self.animation_left_panel_sizer.Add(self.fps_text, wx.SizerFlags().Border()) | |
self.animation_left_panel_sizer.Fit(self.animation_left_panel) | |
# Right Column (Sliders) | |
self.animation_right_panel = wx.Panel(self.animation_panel, style=wx.SIMPLE_BORDER) | |
self.animation_right_panel_sizer = wx.BoxSizer(wx.VERTICAL) | |
self.animation_right_panel.SetSizer(self.animation_right_panel_sizer) | |
self.animation_right_panel.SetAutoLayout(1) | |
self.animation_panel_sizer.Add(self.animation_right_panel, 1, wx.EXPAND) | |
separator = wx.StaticLine(self.animation_right_panel, -1, size=(256, 5)) | |
self.animation_right_panel_sizer.Add(separator, 0, wx.EXPAND) | |
background_text = wx.StaticText(self.animation_right_panel, label="--- Background ---", style=wx.ALIGN_CENTER) | |
self.animation_right_panel_sizer.Add(background_text, 0, wx.EXPAND) | |
self.output_background_choice = wx.Choice( | |
self.animation_right_panel, | |
choices=[ | |
"TRANSPARENT", | |
"GREEN", | |
"BLUE", | |
"BLACK", | |
"WHITE", | |
"LOADED", | |
"CUSTOM" | |
] | |
) | |
self.output_background_choice.SetSelection(0) | |
self.animation_right_panel_sizer.Add(self.output_background_choice, 0, wx.EXPAND) | |
blendshape_groups = { | |
'Eyes': ['eyeLookOutLeft', 'eyeLookOutRight', 'eyeLookDownLeft', 'eyeLookUpLeft', 'eyeWideLeft', 'eyeWideRight'], | |
'Mouth': ['mouthFrownLeft'], | |
'Cheek': ['cheekSquintLeft', 'cheekSquintRight', 'cheekPuff'], | |
'Brow': ['browDownLeft', 'browOuterUpLeft', 'browDownRight', 'browOuterUpRight', 'browInnerUp'], | |
'Eyelash': ['mouthSmileLeft'], | |
'Nose': ['noseSneerLeft', 'noseSneerRight'], | |
'Misc': ['tongueOut'] | |
} | |
for group_name, variables in blendshape_groups.items(): | |
collapsible_pane = wx.CollapsiblePane(self.animation_right_panel, label=group_name, style=wx.CP_DEFAULT_STYLE | wx.CP_NO_TLW_RESIZE) | |
collapsible_pane.Bind(wx.EVT_COLLAPSIBLEPANE_CHANGED, self.on_pane_changed) | |
self.animation_right_panel_sizer.Add(collapsible_pane, 0, wx.EXPAND) | |
pane_sizer = wx.BoxSizer(wx.VERTICAL) | |
collapsible_pane.GetPane().SetSizer(pane_sizer) | |
for variable in variables: | |
variable_label = wx.StaticText(collapsible_pane.GetPane(), label=variable) | |
# Multiply min and max values by 100 for the slider | |
slider = wx.Slider( | |
collapsible_pane.GetPane(), | |
value=0, | |
minValue=0, | |
maxValue=100, | |
size=(150, -1), # Set the width to 150 and height to default | |
style=wx.SL_HORIZONTAL | wx.SL_LABELS | |
) | |
slider.SetName(variable) | |
slider.Bind(wx.EVT_SLIDER, self.on_slider_change) | |
self.sliders[slider.GetId()] = slider | |
pane_sizer.Add(variable_label, 0, wx.ALIGN_CENTER | wx.ALL, 5) | |
pane_sizer.Add(slider, 0, wx.EXPAND) | |
self.animation_right_panel_sizer.Fit(self.animation_right_panel) | |
self.animation_panel_sizer.Fit(self.animation_panel) | |
def on_pane_changed(self, event): | |
# Update the layout when a collapsible pane is expanded or collapsed | |
self.animation_right_panel.Layout() | |
def on_slider_change(self, event): | |
slider = event.GetEventObject() | |
value = slider.GetValue() / 100.0 # Divide by 100 to get the actual float value | |
#print(value) | |
slider_name = slider.GetName() | |
self.ifacialmocap_pose[slider_name] = value | |
def create_ui(self): | |
#MAke the UI Elements | |
self.main_sizer = wx.BoxSizer(wx.VERTICAL) | |
self.SetSizer(self.main_sizer) | |
self.SetAutoLayout(1) | |
self.capture_pose_lock = threading.Lock() | |
#Main panel with JPS | |
self.create_animation_panel(self) | |
self.main_sizer.Add(self.animation_panel, wx.SizerFlags(0).Expand().Border(wx.ALL, 5)) | |
def update_capture_panel(self, event: wx.Event): | |
data = self.ifacialmocap_pose | |
for rotation_name in ROTATION_NAMES: | |
value = data[rotation_name] | |
def convert_to_100(x): | |
return int(max(0.0, min(1.0, x)) * 100) | |
def paint_source_image_panel(self, event: wx.Event): | |
wx.BufferedPaintDC(self.source_image_panel, self.source_image_bitmap) | |
def update_source_image_bitmap(self): | |
dc = wx.MemoryDC() | |
dc.SelectObject(self.source_image_bitmap) | |
if self.wx_source_image is None: | |
self.draw_nothing_yet_string(dc) | |
else: | |
dc.Clear() | |
dc.DrawBitmap(self.wx_source_image, 0, 0, True) | |
del dc | |
def draw_nothing_yet_string(self, dc): | |
dc.Clear() | |
font = wx.Font(wx.FontInfo(14).Family(wx.FONTFAMILY_SWISS)) | |
dc.SetFont(font) | |
w, h = dc.GetTextExtent("Nothing yet!") | |
dc.DrawText("Nothing yet!", (self.poser.get_image_size() - w) // 2, (self.poser.get_image_size() - h) // 2) | |
def paint_result_image_panel(self, event: wx.Event): | |
wx.BufferedPaintDC(self.result_image_panel, self.result_image_bitmap) | |
def combine_pose_with_names(combine_pose): | |
pose_names = [ | |
'eyeLookInLeft', 'eyeLookOutLeft', 'eyeLookDownLeft', 'eyeLookUpLeft', | |
'eyeBlinkLeft', 'eyeSquintLeft', 'eyeWideLeft', 'eyeLookInRight', | |
'eyeLookOutRight', 'eyeLookDownRight', 'eyeLookUpRight', 'eyeBlinkRight', | |
'eyeSquintRight', 'eyeWideRight', 'browDownLeft', 'browOuterUpLeft', | |
'browDownRight', 'browOuterUpRight', 'browInnerUp', 'noseSneerLeft', | |
'noseSneerRight', 'cheekSquintLeft', 'cheekSquintRight', 'cheekPuff', | |
'mouthLeft', 'mouthDimpleLeft', 'mouthFrownLeft', 'mouthLowerDownLeft', | |
'mouthPressLeft', 'mouthSmileLeft', 'mouthStretchLeft', 'mouthUpperUpLeft', | |
'mouthRight', 'mouthDimpleRight', 'mouthFrownRight', 'mouthLowerDownRight', | |
'mouthPressRight', 'mouthSmileRight', 'mouthStretchRight', 'mouthUpperUpRight', | |
'mouthClose', 'mouthFunnel', 'mouthPucker', 'mouthRollLower', 'mouthRollUpper', | |
'mouthShrugLower', 'mouthShrugUpper', 'jawLeft', 'jawRight', 'jawForward', | |
'jawOpen', 'tongueOut', 'headBoneX', 'headBoneY', 'headBoneZ', 'headBoneQuat', | |
'leftEyeBoneX', 'leftEyeBoneY', 'leftEyeBoneZ', 'leftEyeBoneQuat', | |
'rightEyeBoneX', 'rightEyeBoneY', 'rightEyeBoneZ', 'rightEyeBoneQuat' | |
] | |
pose_dict = dict(zip(pose_names, combine_pose)) | |
return pose_dict | |
def determine_data_type(self, data): | |
if isinstance(data, list): | |
print("It's a list.") | |
elif isinstance(data, dict): | |
print("It's a dictionary.") | |
elif isinstance(data, str): | |
print("It's a string.") | |
else: | |
print("Unknown data type.") | |
def count_elements(self, input_data): | |
if isinstance(input_data, list) or isinstance(input_data, dict): | |
return len(input_data) | |
else: | |
raise TypeError("Input must be a list or dictionary.") | |
def convert_list_to_dict(self, list_str): | |
# Evaluate the string to get the actual list | |
list_data = ast.literal_eval(list_str) | |
# Initialize an empty dictionary | |
result_dict = {} | |
# Convert the list to a dictionary | |
for item in list_data: | |
key, value_str = item.split(': ') | |
value = float(value_str) | |
result_dict[key] = value | |
return result_dict | |
def dict_to_tensor(self, d): | |
if isinstance(d, dict): | |
return torch.tensor(list(d.values())) | |
elif isinstance(d, list): | |
return torch.tensor(d) | |
else: | |
raise ValueError("Unsupported data type passed to dict_to_tensor.") | |
def update_ifacualmocap_pose(self, ifacualmocap_pose, emotion_pose): | |
# Update Values - The following values are in emotion_pose but not defined in ifacualmocap_pose | |
# eye_happy_wink_left_index, eye_happy_wink_right_index | |
# eye_surprised_left_index, eye_surprised_right_index | |
# eye_relaxed_left_index, eye_relaxed_right_index | |
# eye_unimpressed | |
# eye_raised_lower_eyelid_left_index, eye_raised_lower_eyelid_right_index | |
# mouth_uuu_index | |
# mouth_eee_index | |
# mouth_ooo_index | |
# mouth_delta | |
# mouth_smirk | |
# body_y_index | |
# body_z_index | |
# breathing_index | |
ifacualmocap_pose['browDownLeft'] = emotion_pose['eyebrow_troubled_left_index'] | |
ifacualmocap_pose['browDownRight'] = emotion_pose['eyebrow_troubled_right_index'] | |
ifacualmocap_pose['browOuterUpLeft'] = emotion_pose['eyebrow_angry_left_index'] | |
ifacualmocap_pose['browOuterUpRight'] = emotion_pose['eyebrow_angry_right_index'] | |
ifacualmocap_pose['browInnerUp'] = emotion_pose['eyebrow_happy_left_index'] | |
ifacualmocap_pose['browInnerUp'] += emotion_pose['eyebrow_happy_right_index'] | |
ifacualmocap_pose['browDownLeft'] = emotion_pose['eyebrow_raised_left_index'] | |
ifacualmocap_pose['browDownRight'] = emotion_pose['eyebrow_raised_right_index'] | |
ifacualmocap_pose['browDownLeft'] += emotion_pose['eyebrow_lowered_left_index'] | |
ifacualmocap_pose['browDownRight'] += emotion_pose['eyebrow_lowered_right_index'] | |
ifacualmocap_pose['browDownLeft'] += emotion_pose['eyebrow_serious_left_index'] | |
ifacualmocap_pose['browDownRight'] += emotion_pose['eyebrow_serious_right_index'] | |
# Update eye values | |
ifacualmocap_pose['eyeWideLeft'] = emotion_pose['eye_surprised_left_index'] | |
ifacualmocap_pose['eyeWideRight'] = emotion_pose['eye_surprised_right_index'] | |
# Update eye blink (though we will overwrite it later) | |
ifacualmocap_pose['eyeBlinkLeft'] = emotion_pose['eye_wink_left_index'] | |
ifacualmocap_pose['eyeBlinkRight'] = emotion_pose['eye_wink_right_index'] | |
# Update iris rotation values | |
ifacualmocap_pose['eyeLookInLeft'] = -emotion_pose['iris_rotation_y_index'] | |
ifacualmocap_pose['eyeLookOutLeft'] = emotion_pose['iris_rotation_y_index'] | |
ifacualmocap_pose['eyeLookInRight'] = emotion_pose['iris_rotation_y_index'] | |
ifacualmocap_pose['eyeLookOutRight'] = -emotion_pose['iris_rotation_y_index'] | |
ifacualmocap_pose['eyeLookUpLeft'] = emotion_pose['iris_rotation_x_index'] | |
ifacualmocap_pose['eyeLookDownLeft'] = -emotion_pose['iris_rotation_x_index'] | |
ifacualmocap_pose['eyeLookUpRight'] = emotion_pose['iris_rotation_x_index'] | |
ifacualmocap_pose['eyeLookDownRight'] = -emotion_pose['iris_rotation_x_index'] | |
# Update iris size values | |
ifacualmocap_pose['irisWideLeft'] = emotion_pose['iris_small_left_index'] | |
ifacualmocap_pose['irisWideRight'] = emotion_pose['iris_small_right_index'] | |
# Update head rotation values | |
ifacualmocap_pose['headBoneX'] = -emotion_pose['head_x_index'] * 15.0 | |
ifacualmocap_pose['headBoneY'] = -emotion_pose['head_y_index'] * 10.0 | |
ifacualmocap_pose['headBoneZ'] = emotion_pose['neck_z_index'] * 15.0 | |
# Update mouth values | |
ifacualmocap_pose['mouthSmileLeft'] = emotion_pose['mouth_aaa_index'] | |
ifacualmocap_pose['mouthSmileRight'] = emotion_pose['mouth_aaa_index'] | |
ifacualmocap_pose['mouthFrownLeft'] = emotion_pose['mouth_lowered_corner_left_index'] | |
ifacualmocap_pose['mouthFrownRight'] = emotion_pose['mouth_lowered_corner_right_index'] | |
ifacualmocap_pose['mouthPressLeft'] = emotion_pose['mouth_raised_corner_left_index'] | |
ifacualmocap_pose['mouthPressRight'] = emotion_pose['mouth_raised_corner_right_index'] | |
return ifacualmocap_pose | |
def update_blinking_pose(self, tranisitiondPose): | |
PARTS = ['wink_left_index', 'wink_right_index'] | |
updated_list = [] | |
should_blink = random.random() <= 0.03 # Determine if there should be a blink | |
for item in tranisitiondPose: | |
key, value = item.split(': ') | |
if key in PARTS: | |
# If there should be a blink, set value to 1; otherwise, use the provided value | |
new_value = 1 if should_blink else float(value) | |
updated_list.append(f"{key}: {new_value}") | |
else: | |
updated_list.append(item) | |
return updated_list | |
def update_talking_pose(self, tranisitiondPose): | |
global is_talking, is_talking_override | |
MOUTHPARTS = ['mouth_aaa_index'] | |
updated_list = [] | |
for item in tranisitiondPose: | |
key, value = item.split(': ') | |
if key in MOUTHPARTS and is_talking_override: | |
new_value = self.random_generate_value(-5000, 5000, abs(1 - float(value))) | |
updated_list.append(f"{key}: {new_value}") | |
else: | |
updated_list.append(item) | |
return updated_list | |
def update_sway_pose_good(self, tranisitiondPose): | |
MOVEPARTS = ['head_y_index'] | |
updated_list = [] | |
print( self.start_values, self.targets, self.progress, self.direction ) | |
for item in tranisitiondPose: | |
key, value = item.split(': ') | |
if key in MOVEPARTS: | |
current_value = float(value) | |
# If progress reaches 1 or 0 | |
if self.progress[key] >= 1 or self.progress[key] <= 0: | |
# Reverse direction | |
self.direction[key] *= -1 | |
# If direction is now forward, set a new target and store starting value | |
if self.direction[key] == 1: | |
self.start_values[key] = current_value | |
self.targets[key] = current_value + random.uniform(-1, 1) | |
self.progress[key] = 0 # Reset progress when setting a new target | |
# Use lerp to interpolate between start and target values | |
new_value = self.start_values[key] + self.progress[key] * (self.targets[key] - self.start_values[key]) | |
# Ensure the value remains within bounds (just in case) | |
new_value = min(max(new_value, -1), 1) | |
# Update progress based on direction | |
self.progress[key] += 0.02 * self.direction[key] | |
updated_list.append(f"{key}: {new_value}") | |
else: | |
updated_list.append(item) | |
return updated_list | |
def update_sway_pose(self, tranisitiondPose): | |
MOVEPARTS = ['head_y_index'] | |
updated_list = [] | |
#print( self.start_values, self.targets, self.progress, self.direction ) | |
for item in tranisitiondPose: | |
key, value = item.split(': ') | |
if key in MOVEPARTS: | |
current_value = float(value) | |
# Use lerp to interpolate between start and target values | |
new_value = self.start_values[key] + self.progress[key] * (self.targets[key] - self.start_values[key]) | |
# Ensure the value remains within bounds (just in case) | |
new_value = min(max(new_value, -1), 1) | |
# Check if we've reached the target or start value | |
is_close_to_target = abs(new_value - self.targets[key]) < 0.04 | |
is_close_to_start = abs(new_value - self.start_values[key]) < 0.04 | |
if (self.direction[key] == 1 and is_close_to_target) or (self.direction[key] == -1 and is_close_to_start): | |
# Reverse direction | |
self.direction[key] *= -1 | |
# If direction is now forward, set a new target and store starting value | |
if self.direction[key] == 1: | |
self.start_values[key] = new_value | |
self.targets[key] = current_value + random.uniform(-0.6, 0.6) | |
self.progress[key] = 0 # Reset progress when setting a new target | |
# Update progress based on direction | |
self.progress[key] += 0.04 * self.direction[key] | |
updated_list.append(f"{key}: {new_value}") | |
else: | |
updated_list.append(item) | |
return updated_list | |
def update_transition_pose(self, last_transition_pose_s, transition_pose_s): | |
inMotion = True | |
# Create dictionaries from the lists for easier comparison | |
last_transition_dict = {} | |
for item in last_transition_pose_s: | |
key = item.split(': ')[0] | |
value = float(item.split(': ')[1]) | |
if key == 'unknown': | |
key += f"_{list(last_transition_dict.values()).count(value)}" | |
last_transition_dict[key] = value | |
transition_dict = {} | |
for item in transition_pose_s: | |
key = item.split(': ')[0] | |
value = float(item.split(': ')[1]) | |
if key == 'unknown': | |
key += f"_{list(transition_dict.values()).count(value)}" | |
transition_dict[key] = value | |
updated_last_transition_pose = [] | |
for key, last_value in last_transition_dict.items(): | |
# If the key exists in transition_dict, increment its value by 0.4 and clip it to the target | |
if key in transition_dict: | |
# If the key is 'wink_left_index' or 'wink_right_index', set the value directly dont animate blinks | |
if key in ['wink_left_index', 'wink_right_index']: # BLINK FIX | |
last_value = transition_dict[key] | |
# For all other keys, increment its value by 0.1 of the delta and clip it to the target | |
else: | |
delta = transition_dict[key] - last_value | |
last_value += delta * 0.1 | |
# Reconstruct the string and append it to the updated list | |
updated_last_transition_pose.append(f"{key}: {last_value}") | |
# If any value is less than the target, set inMotion to True | |
if any(last_transition_dict[k] < transition_dict[k] for k in last_transition_dict if k in transition_dict): | |
inMotion = True | |
else: | |
inMotion = False | |
return updated_last_transition_pose | |
def update_result_image_bitmap(self, event: Optional[wx.Event] = None): | |
global global_timer_paused | |
global initAMI | |
global global_result_image | |
global global_reload | |
global emotion | |
global fps | |
global current_pose | |
global is_talking | |
global is_talking_override | |
global lasttranisitiondPose | |
if global_timer_paused: | |
return | |
try: | |
if global_reload is not None: | |
MainFrame.load_image(self, event=None, file_path=None) # call load_image function here | |
return | |
#OLD METHOD | |
#ifacialmocap_pose = self.animationMain() #GET ANIMATION CHANGES | |
#current_posesaved = self.pose_converter.convert(ifacialmocap_pose) | |
#combined_posesaved = current_posesaved | |
#NEW METHOD | |
#CREATES THE DEFAULT POSE AND STORES OBJ IN STRING | |
#ifacialmocap_pose = self.animationMain() #DISABLE FOR TESTING!!!!!!!!!!!!!!!!!!!!!!!! | |
ifacialmocap_pose = self.ifacialmocap_pose | |
#print("ifacialmocap_pose", ifacialmocap_pose) | |
#GET EMOTION SETTING | |
emotion_pose = self.get_emotion_values(emotion) | |
#print("emotion_pose ", emotion_pose) | |
#MERGE EMOTION SETTING WITH CURRENT OUTPUT | |
updated_pose = self.update_ifacualmocap_pose(ifacialmocap_pose, emotion_pose) | |
#print("updated_pose ", updated_pose) | |
#CONVERT RESULT TO FORMAT NN CAN USE | |
current_pose = self.pose_converter.convert(updated_pose) | |
#print("current_pose ", current_pose) | |
#SEND THROUGH CONVERT | |
current_pose = self.pose_converter.convert(ifacialmocap_pose) | |
#print("current_pose2 ", current_pose) | |
#ADD LABELS/NAMES TO THE POSE | |
names_current_pose = MainFrame.addNamestoConvert(current_pose) | |
#print("current pose :", names_current_pose) | |
#GET THE EMOTION VALUES again for some reason | |
emotion_pose2 = self.get_emotion_values(emotion) | |
#print("target pose :", emotion_pose2) | |
#APPLY VALUES TO THE POSE AGAIN?? This needs to overwrite the values | |
tranisitiondPose = self.animateToEmotion(names_current_pose, emotion_pose2) | |
#print("combine pose :", tranisitiondPose) | |
#smooth animate | |
#print("LAST VALUES: ", lasttranisitiondPose) | |
#print("TARGER VALUES: ", tranisitiondPose) | |
if lasttranisitiondPose != "NotInit": | |
tranisitiondPose = self.update_transition_pose(lasttranisitiondPose, tranisitiondPose) | |
#print("smoothed: ", tranisitiondPose) | |
#Animate blinking | |
tranisitiondPose = self.update_blinking_pose(tranisitiondPose) | |
#Animate Head Sway | |
tranisitiondPose = self.update_sway_pose(tranisitiondPose) | |
#Animate Talking | |
tranisitiondPose = self.update_talking_pose(tranisitiondPose) | |
#reformat the data correctly | |
parsed_data = [] | |
for item in tranisitiondPose: | |
key, value_str = item.split(': ') | |
value = float(value_str) | |
parsed_data.append((key, value)) | |
tranisitiondPosenew = [value for _, value in parsed_data] | |
#not sure what this is for TBH | |
ifacialmocap_pose = tranisitiondPosenew | |
if self.torch_source_image is None: | |
dc = wx.MemoryDC() | |
dc.SelectObject(self.result_image_bitmap) | |
self.draw_nothing_yet_string(dc) | |
del dc | |
return | |
#pose = torch.tensor(tranisitiondPosenew, device=self.device, dtype=self.poser.get_dtype()) | |
pose = self.dict_to_tensor(tranisitiondPosenew).to(device=self.device, dtype=self.poser.get_dtype()) | |
with torch.no_grad(): | |
output_image = self.poser.pose(self.torch_source_image, pose)[0].float() | |
output_image = convert_linear_to_srgb((output_image + 1.0) / 2.0) | |
c, h, w = output_image.shape | |
output_image = (255.0 * torch.transpose(output_image.reshape(c, h * w), 0, 1)).reshape(h, w, c).byte() | |
numpy_image = output_image.detach().cpu().numpy() | |
wx_image = wx.ImageFromBuffer(numpy_image.shape[0], | |
numpy_image.shape[1], | |
numpy_image[:, :, 0:3].tobytes(), | |
numpy_image[:, :, 3].tobytes()) | |
wx_bitmap = wx_image.ConvertToBitmap() | |
dc = wx.MemoryDC() | |
dc.SelectObject(self.result_image_bitmap) | |
dc.Clear() | |
dc.DrawBitmap(wx_bitmap, | |
(self.poser.get_image_size() - numpy_image.shape[0]) // 2, | |
(self.poser.get_image_size() - numpy_image.shape[1]) // 2, True) | |
numpy_image_bgra = numpy_image[:, :, [2, 1, 0, 3]] # Convert color channels from RGB to BGR and keep alpha channel | |
global_result_image = numpy_image_bgra | |
del dc | |
time_now = time.time_ns() | |
if self.last_update_time is not None: | |
elapsed_time = time_now - self.last_update_time | |
fps = 1.0 / (elapsed_time / 10**9) | |
if self.torch_source_image is not None: | |
self.fps_statistics.add_fps(fps) | |
self.fps_text.SetLabelText("FPS = %0.2f" % self.fps_statistics.get_average_fps()) | |
self.last_update_time = time_now | |
if(initAMI == True): #If the models are just now initalized stop animation to save | |
global_timer_paused = True | |
initAMI = False | |
if random.random() <= 0.01: | |
trimmed_fps = round(fps, 1) | |
#print("talkinghead FPS: {:.1f}".format(trimmed_fps)) | |
#Store current pose to use as last pose on next loop | |
lasttranisitiondPose = tranisitiondPose | |
self.Refresh() | |
except KeyboardInterrupt: | |
print("Update process was interrupted by the user.") | |
wx.Exit() | |
def resize_image(image, size=(512, 512)): | |
image.thumbnail(size, Image.LANCZOS) # Step 1: Resize the image to maintain the aspect ratio with the larger dimension being 512 pixels | |
new_image = Image.new("RGBA", size) # Step 2: Create a new image of size 512x512 with transparency | |
new_image.paste(image, ((size[0] - image.size[0]) // 2, | |
(size[1] - image.size[1]) // 2)) # Step 3: Paste the resized image into the new image, centered | |
return new_image | |
def load_image(self, event: wx.Event, file_path=None): | |
global global_source_image # Declare global_source_image as a global variable | |
global global_reload | |
if global_reload is not None: | |
file_path = "global_reload" | |
try: | |
if file_path == "global_reload": | |
pil_image = global_reload | |
else: | |
pil_image = resize_PIL_image( | |
extract_PIL_image_from_filelike(file_path), | |
(self.poser.get_image_size(), self.poser.get_image_size())) | |
w, h = pil_image.size | |
if pil_image.size != (512, 512): | |
print("Resizing Char Card to work") | |
pil_image = MainFrame.resize_image(pil_image) | |
w, h = pil_image.size | |
if pil_image.mode != 'RGBA': | |
self.source_image_string = "Image must have alpha channel!" | |
self.wx_source_image = None | |
self.torch_source_image = None | |
else: | |
self.wx_source_image = wx.Bitmap.FromBufferRGBA(w, h, pil_image.convert("RGBA").tobytes()) | |
self.torch_source_image = extract_pytorch_image_from_PIL_image(pil_image) \ | |
.to(self.device).to(self.poser.get_dtype()) | |
global_source_image = self.torch_source_image # Set global_source_image as a global variable | |
self.update_source_image_bitmap() | |
except Exception as error: | |
print("Error: ", error) | |
global_reload = None #reset the globe load | |
self.Refresh() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='uWu Waifu') | |
parser.add_argument( | |
'--model', | |
type=str, | |
required=False, | |
default='separable_float', | |
choices=['standard_float', 'separable_float', 'standard_half', 'separable_half'], | |
help='The model to use.' | |
) | |
parser.add_argument('--char', type=str, required=False, help='The path to the character image.') | |
parser.add_argument( | |
'--device', | |
type=str, | |
required=False, | |
default='cuda', | |
choices=['cpu', 'cuda'], | |
help='The device to use for PyTorch ("cuda" for GPU, "cpu" for CPU).' | |
) | |
args = parser.parse_args() | |
launch_gui(device=args.device, model=args.model) | |