TomatoCocotree
上传
6a62ffb
raw
history blame
6.8 kB
from typing import Optional, List
import torch
from matplotlib import pyplot
from torch import Tensor
from torch.nn import Module, Sequential, Tanh, Sigmoid
from tha3.nn.image_processing_util import GridChangeApplier, apply_color_change
from tha3.nn.common.resize_conv_unet import ResizeConvUNet, ResizeConvUNetArgs
from tha3.util import numpy_linear_to_srgb
from tha3.module.module_factory import ModuleFactory
from tha3.nn.conv import create_conv3_from_block_args, create_conv3
from tha3.nn.nonlinearity_factory import ReLUFactory
from tha3.nn.normalization import InstanceNorm2dFactory
from tha3.nn.util import BlockArgs
class Editor07Args:
def __init__(self,
image_size: int = 512,
image_channels: int = 4,
num_pose_params: int = 6,
start_channels: int = 32,
bottleneck_image_size=32,
num_bottleneck_blocks=6,
max_channels: int = 512,
upsampling_mode: str = 'nearest',
block_args: Optional[BlockArgs] = None,
use_separable_convolution: bool = False):
if block_args is None:
block_args = BlockArgs(
normalization_layer_factory=InstanceNorm2dFactory(),
nonlinearity_factory=ReLUFactory(inplace=False))
self.block_args = block_args
self.upsampling_mode = upsampling_mode
self.max_channels = max_channels
self.num_bottleneck_blocks = num_bottleneck_blocks
self.bottleneck_image_size = bottleneck_image_size
self.start_channels = start_channels
self.num_pose_params = num_pose_params
self.image_channels = image_channels
self.image_size = image_size
self.use_separable_convolution = use_separable_convolution
class Editor07(Module):
def __init__(self, args: Editor07Args):
super().__init__()
self.args = args
self.body = ResizeConvUNet(ResizeConvUNetArgs(
image_size=args.image_size,
input_channels=2 * args.image_channels + args.num_pose_params + 2,
start_channels=args.start_channels,
bottleneck_image_size=args.bottleneck_image_size,
num_bottleneck_blocks=args.num_bottleneck_blocks,
max_channels=args.max_channels,
upsample_mode=args.upsampling_mode,
block_args=args.block_args,
use_separable_convolution=args.use_separable_convolution))
self.color_change_creator = Sequential(
create_conv3_from_block_args(
in_channels=self.args.start_channels,
out_channels=self.args.image_channels,
bias=True,
block_args=self.args.block_args),
Tanh())
self.alpha_creator = Sequential(
create_conv3_from_block_args(
in_channels=self.args.start_channels,
out_channels=self.args.image_channels,
bias=True,
block_args=self.args.block_args),
Sigmoid())
self.grid_change_creator = create_conv3(
in_channels=self.args.start_channels,
out_channels=2,
bias=False,
initialization_method='zero',
use_spectral_norm=False)
self.grid_change_applier = GridChangeApplier()
def forward(self,
input_original_image: Tensor,
input_warped_image: Tensor,
input_grid_change: Tensor,
pose: Tensor,
*args) -> List[Tensor]:
n, c = pose.shape
pose = pose.view(n, c, 1, 1).repeat(1, 1, self.args.image_size, self.args.image_size)
feature = torch.cat([input_original_image, input_warped_image, input_grid_change, pose], dim=1)
feature = self.body.forward(feature)[-1]
output_grid_change = input_grid_change + self.grid_change_creator(feature)
output_color_change = self.color_change_creator(feature)
output_color_change_alpha = self.alpha_creator(feature)
output_warped_image = self.grid_change_applier.apply(output_grid_change, input_original_image)
output_color_changed = apply_color_change(output_color_change_alpha, output_color_change, output_warped_image)
return [
output_color_changed,
output_color_change_alpha,
output_color_change,
output_warped_image,
output_grid_change,
]
COLOR_CHANGED_IMAGE_INDEX = 0
COLOR_CHANGE_ALPHA_INDEX = 1
COLOR_CHANGE_IMAGE_INDEX = 2
WARPED_IMAGE_INDEX = 3
GRID_CHANGE_INDEX = 4
OUTPUT_LENGTH = 5
class Editor07Factory(ModuleFactory):
def __init__(self, args: Editor07Args):
super().__init__()
self.args = args
def create(self) -> Module:
return Editor07(self.args)
def show_image(pytorch_image):
numpy_image = ((pytorch_image + 1.0) / 2.0).squeeze(0).numpy()
numpy_image[0:3, :, :] = numpy_linear_to_srgb(numpy_image[0:3, :, :])
c, h, w = numpy_image.shape
numpy_image = numpy_image.reshape((c, h * w)).transpose().reshape((h, w, c))
pyplot.imshow(numpy_image)
pyplot.show()
if __name__ == "__main__":
cuda = torch.device('cuda')
image_size = 512
image_channels = 4
num_pose_params = 6
args = Editor07Args(
image_size=512,
image_channels=4,
start_channels=32,
num_pose_params=6,
bottleneck_image_size=32,
num_bottleneck_blocks=6,
max_channels=512,
upsampling_mode='nearest',
block_args=BlockArgs(
initialization_method='he',
use_spectral_norm=False,
normalization_layer_factory=InstanceNorm2dFactory(),
nonlinearity_factory=ReLUFactory(inplace=False)))
module = Editor07(args).to(cuda)
image_count = 1
input_image = torch.zeros(image_count, 4, image_size, image_size, device=cuda)
direct_image = torch.zeros(image_count, 4, image_size, image_size, device=cuda)
warped_image = torch.zeros(image_count, 4, image_size, image_size, device=cuda)
grid_change = torch.zeros(image_count, 2, image_size, image_size, device=cuda)
pose = torch.zeros(image_count, num_pose_params, device=cuda)
repeat = 100
acc = 0.0
for i in range(repeat + 2):
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
module.forward(input_image, warped_image, grid_change, pose)
end.record()
torch.cuda.synchronize()
if i >= 2:
elapsed_time = start.elapsed_time(end)
print("%d:" % i, elapsed_time)
acc = acc + elapsed_time
print("average:", acc / repeat)