File size: 31,491 Bytes
4c022fe
 
 
 
 
 
 
 
ea48617
99e3c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41fdef7
 
99e3c03
 
41fdef7
99e3c03
41fdef7
 
 
 
 
 
99e3c03
41fdef7
99e3c03
 
 
 
41fdef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c022fe
99e3c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e3c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c022fe
41fdef7
4c022fe
 
 
 
 
 
 
 
 
 
99e3c03
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
41fdef7
4c022fe
 
 
 
 
 
b5268ad
 
4c022fe
 
 
 
 
99e3c03
 
 
ab7db7f
 
 
41fdef7
 
99e3c03
 
 
ab7db7f
4c022fe
 
99e3c03
 
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41fdef7
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e3c03
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e3c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c022fe
ab7db7f
f6e53b7
99e3c03
 
41fdef7
 
99e3c03
ea48617
41fdef7
 
 
 
 
 
 
 
99e3c03
 
 
ea48617
41fdef7
 
ea48617
 
99e3c03
 
 
41fdef7
99e3c03
41fdef7
 
 
 
 
ea48617
 
 
 
 
99e3c03
 
 
 
 
 
 
 
 
 
ea48617
 
 
41fdef7
 
 
 
99e3c03
 
41fdef7
 
 
 
 
 
 
 
 
 
 
 
 
99e3c03
 
41fdef7
99e3c03
41fdef7
 
 
 
 
 
 
 
 
 
 
 
 
99e3c03
 
41fdef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e3c03
 
 
 
 
 
 
 
 
 
 
41fdef7
99e3c03
41fdef7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import numpy as np
import os
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torchvision

from utils.richtext_utils import seed_everything
from sklearn.cluster import KMeans, SpectralClustering

# SelfAttentionLayers = [
#     # 'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
#     # 'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
#     'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
#     # 'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
#     'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
#     'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
#     'mid_block.attentions.0.transformer_blocks.0.attn1',
#     'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
#     'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
#     'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
#     # 'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
#     'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
#     # 'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
#     # 'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
#     # 'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
#     # 'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
# ]

SelfAttentionLayers = [
    # 'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
    # 'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
    'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
    # 'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
    'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
    'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
    'mid_block.attentions.0.transformer_blocks.0.attn1',
    'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
    'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
    'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
    # 'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
    'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
    # 'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
    # 'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
    # 'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
    # 'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
]


CrossAttentionLayers = [
    # 'down_blocks.0.attentions.0.transformer_blocks.0.attn2',
    # 'down_blocks.0.attentions.1.transformer_blocks.0.attn2',
    'down_blocks.1.attentions.0.transformer_blocks.0.attn2',
    # 'down_blocks.1.attentions.1.transformer_blocks.0.attn2',
    'down_blocks.2.attentions.0.transformer_blocks.0.attn2',
    'down_blocks.2.attentions.1.transformer_blocks.0.attn2',
    'mid_block.attentions.0.transformer_blocks.0.attn2',
    'up_blocks.1.attentions.0.transformer_blocks.0.attn2',
    'up_blocks.1.attentions.1.transformer_blocks.0.attn2',
    'up_blocks.1.attentions.2.transformer_blocks.0.attn2',
    # 'up_blocks.2.attentions.0.transformer_blocks.0.attn2',
    'up_blocks.2.attentions.1.transformer_blocks.0.attn2',
    # 'up_blocks.2.attentions.2.transformer_blocks.0.attn2',
    # 'up_blocks.3.attentions.0.transformer_blocks.0.attn2',
    # 'up_blocks.3.attentions.1.transformer_blocks.0.attn2',
    # 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
]

# CrossAttentionLayers = [
#     'down_blocks.0.attentions.0.transformer_blocks.0.attn2',
#     'down_blocks.0.attentions.1.transformer_blocks.0.attn2',
#     'down_blocks.1.attentions.0.transformer_blocks.0.attn2',
#     'down_blocks.1.attentions.1.transformer_blocks.0.attn2',
#     'down_blocks.2.attentions.0.transformer_blocks.0.attn2',
#     'down_blocks.2.attentions.1.transformer_blocks.0.attn2',
#     'mid_block.attentions.0.transformer_blocks.0.attn2',
#     'up_blocks.1.attentions.0.transformer_blocks.0.attn2',
#     'up_blocks.1.attentions.1.transformer_blocks.0.attn2',
#     'up_blocks.1.attentions.2.transformer_blocks.0.attn2',
#     'up_blocks.2.attentions.0.transformer_blocks.0.attn2',
#     'up_blocks.2.attentions.1.transformer_blocks.0.attn2',
#     'up_blocks.2.attentions.2.transformer_blocks.0.attn2',
#     'up_blocks.3.attentions.0.transformer_blocks.0.attn2',
#     'up_blocks.3.attentions.1.transformer_blocks.0.attn2',
#     'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
# ]

# CrossAttentionLayers_XL = [
#     'up_blocks.0.attentions.0.transformer_blocks.1.attn2',
#     'up_blocks.0.attentions.0.transformer_blocks.2.attn2',
#     'up_blocks.0.attentions.0.transformer_blocks.3.attn2',
#     'up_blocks.0.attentions.0.transformer_blocks.4.attn2',
#     'up_blocks.0.attentions.0.transformer_blocks.5.attn2',
#     'up_blocks.0.attentions.0.transformer_blocks.6.attn2',
#     'up_blocks.0.attentions.0.transformer_blocks.7.attn2',
# ]
CrossAttentionLayers_XL = [
    'down_blocks.2.attentions.1.transformer_blocks.3.attn2',
    'down_blocks.2.attentions.1.transformer_blocks.4.attn2',
    'mid_block.attentions.0.transformer_blocks.0.attn2',
    'mid_block.attentions.0.transformer_blocks.1.attn2',
    'mid_block.attentions.0.transformer_blocks.2.attn2',
    'mid_block.attentions.0.transformer_blocks.3.attn2',
    'up_blocks.0.attentions.0.transformer_blocks.1.attn2',
    'up_blocks.0.attentions.0.transformer_blocks.2.attn2',
    'up_blocks.0.attentions.0.transformer_blocks.3.attn2',
    'up_blocks.0.attentions.0.transformer_blocks.4.attn2',
    'up_blocks.0.attentions.0.transformer_blocks.5.attn2',
    'up_blocks.0.attentions.0.transformer_blocks.6.attn2',
    'up_blocks.0.attentions.0.transformer_blocks.7.attn2',
    'up_blocks.1.attentions.0.transformer_blocks.0.attn2'
]

def split_attention_maps_over_steps(attention_maps):
    r"""Function for splitting attention maps over steps.
    Args:
        attention_maps (dict): Dictionary of attention maps.
        sampler_order (int): Order of the sampler.
    """
    # This function splits attention maps into unconditional and conditional score and over steps

    attention_maps_cond = dict()    # Maps corresponding to conditional score
    attention_maps_uncond = dict()  # Maps corresponding to unconditional score

    for layer in attention_maps.keys():

        for step_num in range(len(attention_maps[layer])):
            if step_num not in attention_maps_cond:
                attention_maps_cond[step_num] = dict()
                attention_maps_uncond[step_num] = dict()

            attention_maps_uncond[step_num].update(
                {layer: attention_maps[layer][step_num][:1]})
            attention_maps_cond[step_num].update(
                {layer: attention_maps[layer][step_num][1:2]})

    return attention_maps_cond, attention_maps_uncond


def save_attention_heatmaps(attention_maps, tokens_vis, save_dir, prefix):
    r"""Function to plot heatmaps for attention maps.

    Args:
        attention_maps (dict): Dictionary of attention maps per layer
        save_dir (str): Directory to save attention maps
        prefix (str): Filename prefix for html files

    Returns:
        Heatmaps, one per sample.
    """

    html_names = []

    idx = 0
    html_list = []

    for layer in attention_maps.keys():
        if idx == 0:
            # import ipdb;ipdb.set_trace()
            # create a set of html files.

            batch_size = attention_maps[layer].shape[0]

            for sample_num in range(batch_size):
                # html path
                html_rel_path = os.path.join('sample_{}'.format(
                    sample_num), '{}.html'.format(prefix))
                html_names.append(html_rel_path)
                html_path = os.path.join(save_dir, html_rel_path)
                os.makedirs(os.path.dirname(html_path), exist_ok=True)
                html_list.append(open(html_path, 'wt'))
                html_list[sample_num].write(
                    '<html><head></head><body><table>\n')

        for sample_num in range(batch_size):

            save_path = os.path.join(save_dir, 'sample_{}'.format(sample_num),
                                     prefix, 'layer_{}'.format(layer)) + '.jpg'
            Path(os.path.dirname(save_path)).mkdir(parents=True, exist_ok=True)

            layer_name = 'layer_{}'.format(layer)
            html_list[sample_num].write(
                f'<tr><td><h1>{layer_name}</h1></td></tr>\n')

            prefix_stem = prefix.split('/')[-1]
            relative_image_path = os.path.join(
                prefix_stem, 'layer_{}'.format(layer)) + '.jpg'
            html_list[sample_num].write(
                f'<tr><td><img src=\"{relative_image_path}\"></td></tr>\n')

            plt.figure()
            plt.clf()
            nrows = 2
            ncols = 7
            fig, axs = plt.subplots(nrows=nrows, ncols=ncols)

            fig.set_figheight(8)
            fig.set_figwidth(28.5)

            # axs[0].set_aspect('equal')
            # axs[1].set_aspect('equal')
            # axs[2].set_aspect('equal')
            # axs[3].set_aspect('equal')
            # axs[4].set_aspect('equal')
            # axs[5].set_aspect('equal')

            cmap = plt.get_cmap('YlOrRd')

            for rid in range(nrows):
                for cid in range(ncols):
                    tid = rid*ncols + cid
                    # import ipdb;ipdb.set_trace()
                    attention_map_cur = attention_maps[layer][sample_num, :, :, tid].numpy(
                    )
                    vmax = float(attention_map_cur.max())
                    vmin = float(attention_map_cur.min())
                    sns.heatmap(
                        attention_map_cur, annot=False, cbar=False, ax=axs[rid, cid],
                        cmap=cmap, vmin=vmin, vmax=vmax
                    )
                    axs[rid, cid].set_xlabel(tokens_vis[tid])

            # axs[0].set_xlabel('Self attention')
            # axs[1].set_xlabel('Temporal attention')
            # axs[2].set_xlabel('T5 text attention')
            # axs[3].set_xlabel('CLIP text attention')
            # axs[4].set_xlabel('CLIP image attention')
            # axs[5].set_xlabel('Null text token')

            norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
            sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
            # fig.colorbar(sm, cax=axs[6])

            fig.tight_layout()
            plt.savefig(save_path, dpi=64)
            plt.close('all')

        if idx == (len(attention_maps.keys()) - 1):
            for sample_num in range(batch_size):
                html_list[sample_num].write('</table></body></html>')
                html_list[sample_num].close()

        idx += 1

    return html_names


def create_recursive_html_link(html_path, save_dir):
    r"""Function for creating recursive html links.
    If the path is dir1/dir2/dir3/*.html,
    we create chained directories
        -dir1
            dir1.html (has links to all children)
            -dir2
                dir2.html   (has links to all children)
                -dir3
                    dir3.html

    Args:
        html_path (str): Path to html file.
        save_dir (str): Save directory.
    """

    html_path_split = os.path.splitext(html_path)[0].split('/')
    if len(html_path_split) == 1:
        return

    # First create the root directory
    root_dir = html_path_split[0]
    child_dir = html_path_split[1]

    cur_html_path = os.path.join(save_dir, '{}.html'.format(root_dir))
    if os.path.exists(cur_html_path):

        fp = open(cur_html_path, 'r')
        lines_written = fp.readlines()
        fp.close()

        fp = open(cur_html_path, 'a+')
        child_path = os.path.join(root_dir, f'{child_dir}.html')
        line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n'

        if line_to_write not in lines_written:
            fp.write('<html><head></head><body><table>\n')
            fp.write(line_to_write)
            fp.write('</table></body></html>')
        fp.close()

    else:

        fp = open(cur_html_path, 'w')

        child_path = os.path.join(root_dir, f'{child_dir}.html')
        line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n'

        fp.write('<html><head></head><body><table>\n')
        fp.write(line_to_write)
        fp.write('</table></body></html>')

        fp.close()

    child_path = '/'.join(html_path.split('/')[1:])
    save_dir = os.path.join(save_dir, root_dir)
    create_recursive_html_link(child_path, save_dir)


def visualize_attention_maps(attention_maps_all, save_dir, width, height, tokens_vis):
    r"""Function to visualize attention maps.
    Args:
        save_dir (str): Path to save attention maps
        batch_size (int): Batch size
        sampler_order (int): Sampler order
    """

    rand_name = list(attention_maps_all.keys())[0]
    nsteps = len(attention_maps_all[rand_name])
    hw_ori = width * height

    # html_path = save_dir + '.html'
    text_input = save_dir.split('/')[-1]
    # f = open(html_path, 'wt')

    all_html_paths = []

    for step_num in range(0, nsteps, 5):

        # if cond_id == 'cond':
        #     attention_maps_cur = attention_maps_cond[step_num]
        # else:
        #     attention_maps_cur = attention_maps_uncond[step_num]

        attention_maps = dict()

        for layer in attention_maps_all.keys():

            attention_ind = attention_maps_all[layer][step_num].cpu()

            # Attention maps are of shape [batch_size, nkeys, 77]
            # since they are averaged out while collecting from hooks to save memory.
            # Now split the heads from batch dimension
            bs, hw, nclip = attention_ind.shape
            down_ratio = np.sqrt(hw_ori // hw)
            width_cur = int(width // down_ratio)
            height_cur = int(height // down_ratio)
            attention_ind = attention_ind.reshape(
                bs, height_cur, width_cur, nclip)

            attention_maps[layer] = attention_ind

        # Obtain heatmaps corresponding to random heads and individual heads

        html_names = save_attention_heatmaps(
            attention_maps, tokens_vis, save_dir=save_dir, prefix='step_{}/attention_maps_cond'.format(
                step_num)
        )

        # Write the logic for recursively creating pages
        for html_name_cur in html_names:
            all_html_paths.append(os.path.join(text_input, html_name_cur))

    save_dir_root = '/'.join(save_dir.split('/')[0:-1])
    for html_pth in all_html_paths:
        create_recursive_html_link(html_pth, save_dir_root)


def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None):
    for i, attn_map in enumerate(atten_map_list):
        n_obj = len(attn_map)
        plt.figure()
        plt.clf()

        fig, axs = plt.subplots(
            ncols=n_obj+1, gridspec_kw=dict(width_ratios=[1 for _ in range(n_obj)]+[0.1]))

        fig.set_figheight(3)
        fig.set_figwidth(3*n_obj+0.1)

        cmap = plt.get_cmap('YlOrRd')

        vmax = 0
        vmin = 1
        for tid in range(n_obj):
            attention_map_cur = attn_map[tid]
            vmax = max(vmax, float(attention_map_cur.max()))
            vmin = min(vmin, float(attention_map_cur.min()))

        for tid in range(n_obj):
            sns.heatmap(
                attn_map[tid][0], annot=False, cbar=False, ax=axs[tid],
                cmap=cmap, vmin=vmin, vmax=vmax
            )
            axs[tid].set_axis_off()

            if tokens_vis is not None:
                if tid == n_obj-1:
                    axs_xlabel = 'other tokens'
                else:
                    axs_xlabel = ''
                    for token_id in obj_tokens[tid]:
                        axs_xlabel += ' ' + tokens_vis[token_id.item() -
                                                       1][:-len('</w>')]
                axs[tid].set_title(axs_xlabel)

        norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
        fig.colorbar(sm, cax=axs[-1])

        fig.tight_layout()

        canvas = fig.canvas
        canvas.draw()
        width, height = canvas.get_width_height()
        img = np.frombuffer(canvas.tostring_rgb(),
                            dtype='uint8').reshape((height, width, 3))
        plt.savefig(os.path.join(
            save_dir, 'average_seed%d_attn%d.jpg' % (seed, i)), dpi=100)
        plt.close('all')
    return img


def get_average_attention_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None,
                               preprocess=False):
    r"""Function to visualize attention maps.
    Args:
        save_dir (str): Path to save attention maps
        batch_size (int): Batch size
        sampler_order (int): Sampler order
    """

    # Split attention maps over steps
    attention_maps_cond, _ = split_attention_maps_over_steps(
        attention_maps
    )

    nsteps = len(attention_maps_cond)
    hw_ori = width * height

    attention_maps = []
    for obj_token in obj_tokens:
        attention_maps.append([])

    for step_num in range(nsteps):
        attention_maps_cur = attention_maps_cond[step_num]

        for layer in attention_maps_cur.keys():
            if step_num < 10 or layer not in CrossAttentionLayers:
                continue

            attention_ind = attention_maps_cur[layer].cpu()

            # Attention maps are of shape [batch_size, nkeys, 77]
            # since they are averaged out while collecting from hooks to save memory.
            # Now split the heads from batch dimension
            bs, hw, nclip = attention_ind.shape
            down_ratio = np.sqrt(hw_ori // hw)
            width_cur = int(width // down_ratio)
            height_cur = int(height // down_ratio)
            attention_ind = attention_ind.reshape(
                bs, height_cur, width_cur, nclip)
            for obj_id, obj_token in enumerate(obj_tokens):
                if obj_token[0] == -1:
                    attention_map_prev = torch.stack(
                        [attention_maps[i][-1] for i in range(obj_id)]).sum(0)
                    attention_maps[obj_id].append(
                        attention_map_prev.max()-attention_map_prev)
                else:
                    obj_attention_map = attention_ind[:, :, :, obj_token].max(-1, True)[
                        0].permute([3, 0, 1, 2])
                    # obj_attention_map = attention_ind[:, :, :, obj_token].mean(-1, True).permute([3, 0, 1, 2])
                    obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width),
                                                                                 interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True)
                    attention_maps[obj_id].append(obj_attention_map)

    attention_maps_averaged = []
    for obj_id, obj_token in enumerate(obj_tokens):
        if obj_id == len(obj_tokens) - 1:
            attention_maps_averaged.append(
                torch.cat(attention_maps[obj_id]).mean(0))
        else:
            attention_maps_averaged.append(
                torch.cat(attention_maps[obj_id]).mean(0))

    attention_maps_averaged_normalized = []
    attention_maps_averaged_sum = torch.cat(attention_maps_averaged).sum(0)
    for obj_id, obj_token in enumerate(obj_tokens):
        attention_maps_averaged_normalized.append(
            attention_maps_averaged[obj_id]/attention_maps_averaged_sum)

    if obj_tokens[-1][0] != -1:
        attention_maps_averaged_normalized = (
            torch.cat(attention_maps_averaged)/0.001).softmax(0)
        attention_maps_averaged_normalized = [
            attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])]

    if preprocess:
        selem = square(5)
        selem = square(3)
        selem = square(1)
        attention_maps_averaged_eroded = [erosion(skimage.img_as_float(
            map[0].numpy()*255), selem) for map in attention_maps_averaged_normalized[:2]]
        attention_maps_averaged_eroded = [(torch.from_numpy(map).unsqueeze(
            0)/255. > 0.8).float() for map in attention_maps_averaged_eroded]
        attention_maps_averaged_eroded.append(
            1 - torch.cat(attention_maps_averaged_eroded).sum(0, True))
        plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized,
                            attention_maps_averaged_eroded], obj_tokens, save_dir, seed, tokens_vis)
        attention_maps_averaged_eroded = [attn_mask.unsqueeze(1).repeat(
            [1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_eroded]
        return attention_maps_averaged_eroded
    else:
        plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
                            obj_tokens, save_dir, seed, tokens_vis)
        attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
            [1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
        return attention_maps_averaged_normalized


def get_average_attention_maps_threshold(attention_maps, save_dir, width, height, obj_tokens, seed=0, threshold=0.02):
    r"""Function to visualize attention maps.
    Args:
        save_dir (str): Path to save attention maps
        batch_size (int): Batch size
        sampler_order (int): Sampler order
    """

    _EPS = 1e-8
    # Split attention maps over steps
    attention_maps_cond, _ = split_attention_maps_over_steps(
        attention_maps
    )

    nsteps = len(attention_maps_cond)
    hw_ori = width * height

    attention_maps = []
    for obj_token in obj_tokens:
        attention_maps.append([])

    # for each side prompt, get attention maps for all steps and all layers
    for step_num in range(nsteps):
        attention_maps_cur = attention_maps_cond[step_num]
        for layer in attention_maps_cur.keys():
            attention_ind = attention_maps_cur[layer].cpu()
            bs, hw, nclip = attention_ind.shape
            down_ratio = np.sqrt(hw_ori // hw)
            width_cur = int(width // down_ratio)
            height_cur = int(height // down_ratio)
            attention_ind = attention_ind.reshape(
                bs, height_cur, width_cur, nclip)
            for obj_id, obj_token in enumerate(obj_tokens):
                if attention_ind.shape[1] > width//2:
                    continue
                if obj_token[0] != -1:
                    obj_attention_map = attention_ind[:, :, :,
                                                      obj_token].mean(-1, True).permute([3, 0, 1, 2])
                    obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width),
                                                                                 interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True)
                    attention_maps[obj_id].append(obj_attention_map)

    # average of all steps and layers, thresholding
    attention_maps_thres = []
    attention_maps_averaged = []
    for obj_id, obj_token in enumerate(obj_tokens):
        if obj_token[0] != -1:
            average_map = torch.cat(attention_maps[obj_id]).mean(0)
            attention_maps_averaged.append(average_map)
            attention_maps_thres.append((average_map > threshold).float())

    # get the remaining region except for the original prompt
    attention_maps_averaged_normalized = []
    attention_maps_averaged_sum = torch.cat(attention_maps_thres).sum(0) + _EPS
    for obj_id, obj_token in enumerate(obj_tokens):
        if obj_token[0] != -1:
            attention_maps_averaged_normalized.append(
                attention_maps_thres[obj_id]/attention_maps_averaged_sum)
        else:
            attention_map_prev = torch.stack(
                attention_maps_averaged_normalized).sum(0)
            attention_maps_averaged_normalized.append(1.-attention_map_prev)

    plot_attention_maps(
        [attention_maps_averaged, attention_maps_averaged_normalized], save_dir, seed)

    attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
        [1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
    # attention_maps_averaged_normalized = attention_maps_averaged_normalized.unsqueeze(1).repeat([1, 4, 1, 1]).cuda()
    return attention_maps_averaged_normalized


def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, height, obj_tokens, kmeans_seed=0, tokens_vis=None,
                   preprocess=False, segment_threshold=0.3, num_segments=5, return_vis=False, save_attn=False):
    r"""Function to visualize attention maps.
    Args:
        save_dir (str): Path to save attention maps
        batch_size (int): Batch size
        sampler_order (int): Sampler order
    """

    resolution = 32
    # attn_maps_1024 = [attn_map for attn_map in selfattn_maps.values(
    # ) if attn_map.shape[1] == resolution**2]
    # attn_maps_1024 = torch.cat(attn_maps_1024).mean(0).cpu().numpy()
    attn_maps_1024 = {8: [], 16: [], 32: [], 64: []}
    for attn_map in selfattn_maps.values():
        resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
        if resolution_map != resolution:
            continue
        # attn_map = torch.nn.functional.interpolate(rearrange(attn_map, '1 c (h w) -> 1 c h w', h=resolution_map), (resolution, resolution),
        #                                            mode='bicubic', antialias=True)
        # attn_map = rearrange(attn_map, '1 (h w) a b -> 1 (a b) h w', h=resolution_map)
        attn_map = attn_map.reshape(
            1, resolution_map, resolution_map, resolution_map**2).permute([3, 0, 1, 2]).float()
        attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
                                                   mode='bicubic', antialias=True)
        attn_maps_1024[resolution_map].append(attn_map.permute([1, 2, 3, 0]).reshape(
            1, resolution**2, resolution_map**2))
    attn_maps_1024 = torch.cat([torch.cat(v).mean(0).cpu()
                                for v in attn_maps_1024.values() if len(v) > 0], -1).numpy()
    if save_attn:
        print('saving self-attention maps...', attn_maps_1024.shape)
        torch.save(torch.from_numpy(attn_maps_1024),
                   'results/maps/selfattn_maps.pth')
    seed_everything(kmeans_seed)
    # import ipdb;ipdb.set_trace()
    # kmeans = KMeans(n_clusters=num_segments,
    #                 n_init=10).fit(attn_maps_1024)
    # clusters = kmeans.labels_
    # clusters = clusters.reshape(resolution, resolution)
    # mesh = np.array(np.meshgrid(range(resolution), range(resolution), indexing='ij'), dtype=np.float32)/resolution
    # dists = mesh.reshape(2, -1).T
    # delta = 0.01
    # spatial_sim = rbf_kernel(dists, dists)*delta
    sc = SpectralClustering(num_segments, affinity='precomputed', n_init=100,
                            assign_labels='kmeans')
    clusters = sc.fit_predict(attn_maps_1024)
    clusters = clusters.reshape(resolution, resolution)
    fig = plt.figure()
    plt.imshow(clusters)
    plt.axis('off')
    plt.savefig(os.path.join(save_dir, 'segmentation_k%d_seed%d.jpg' % (num_segments, kmeans_seed)),
                bbox_inches='tight', pad_inches=0)
    if return_vis:
        canvas = fig.canvas
        canvas.draw()
        cav_width, cav_height = canvas.get_width_height()
        segments_vis = np.frombuffer(canvas.tostring_rgb(),
                                     dtype='uint8').reshape((cav_height, cav_width, 3))

    plt.close()

    # label the segmentation mask using cross-attention maps
    cross_attn_maps_1024 = []
    for attn_map in crossattn_maps.values():
        resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
        # if resolution_map != 16:
        # continue
        attn_map = attn_map.reshape(
            1, resolution_map, resolution_map, -1).permute([0, 3, 1, 2]).float()
        attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
                                                   mode='bicubic', antialias=True)
        cross_attn_maps_1024.append(attn_map.permute([0, 2, 3, 1]))

    cross_attn_maps_1024 = torch.cat(
        cross_attn_maps_1024).mean(0).cpu().numpy()
    normalized_span_maps = []
    for token_ids in obj_tokens:
        span_token_maps = cross_attn_maps_1024[:, :, token_ids.numpy()]
        normalized_span_map = np.zeros_like(span_token_maps)
        for i in range(span_token_maps.shape[-1]):
            curr_noun_map = span_token_maps[:, :, i]
            normalized_span_map[:, :, i] = (
                # curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
                curr_noun_map - np.abs(curr_noun_map.min())) / (curr_noun_map.max()-curr_noun_map.min())
        normalized_span_maps.append(normalized_span_map)
    foreground_token_maps = [np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze(
    ) for normalized_span_map in normalized_span_maps]
    background_map = np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze()
    for c in range(num_segments):
        cluster_mask = np.zeros_like(clusters)
        cluster_mask[clusters == c] = 1.
        is_foreground = False
        for normalized_span_map, foreground_nouns_map, token_ids in zip(normalized_span_maps, foreground_token_maps, obj_tokens):
            score_maps = [cluster_mask * normalized_span_map[:, :, i]
                          for i in range(len(token_ids))]
            scores = [score_map.sum() / cluster_mask.sum()
                      for score_map in score_maps]
            if max(scores) > segment_threshold:
                foreground_nouns_map += cluster_mask
                is_foreground = True
        if not is_foreground:
            background_map += cluster_mask
    foreground_token_maps.append(background_map)

    # resize the token maps and visualization
    resized_token_maps = torch.cat([torch.nn.functional.interpolate(torch.from_numpy(token_map).unsqueeze(0).unsqueeze(
        0), (height, width), mode='bicubic', antialias=True)[0] for token_map in foreground_token_maps]).clamp(0, 1)

    resized_token_maps = resized_token_maps / \
        (resized_token_maps.sum(0, True)+1e-8)
    resized_token_maps = [token_map.unsqueeze(
        0) for token_map in resized_token_maps]
    foreground_token_maps = [token_map[None, :, :]
                             for token_map in foreground_token_maps]
    if preprocess:
        selem = square(5)
        eroded_token_maps = torch.stack([torch.from_numpy(erosion(skimage.img_as_float(
            map[0].numpy()*255), selem))/255. for map in resized_token_maps[:-1]]).clamp(0, 1)
        # import ipdb; ipdb.set_trace()
        eroded_background_maps = (1-eroded_token_maps.sum(0, True)).clamp(0, 1)
        eroded_token_maps = torch.cat([eroded_token_maps, eroded_background_maps])
        eroded_token_maps = eroded_token_maps / (eroded_token_maps.sum(0, True)+1e-8)
        resized_token_maps = [token_map.unsqueeze(
            0) for token_map in eroded_token_maps]

    token_maps_vis = plot_attention_maps([foreground_token_maps, resized_token_maps], obj_tokens,
                                         save_dir, kmeans_seed, tokens_vis)
    resized_token_maps = [token_map.unsqueeze(1).repeat(
        [1, 4, 1, 1]).to(attn_map.dtype).cuda() for token_map in resized_token_maps]
    if return_vis:
        return resized_token_maps, segments_vis, token_maps_vis
    else:
        return resized_token_maps