Spaces:
Runtime error
Runtime error
File size: 31,491 Bytes
4c022fe ea48617 99e3c03 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 4c022fe 99e3c03 4c022fe 99e3c03 4c022fe 41fdef7 4c022fe 99e3c03 4c022fe 41fdef7 4c022fe b5268ad 4c022fe 99e3c03 ab7db7f 41fdef7 99e3c03 ab7db7f 4c022fe 99e3c03 4c022fe 41fdef7 4c022fe 99e3c03 4c022fe 99e3c03 4c022fe ab7db7f f6e53b7 99e3c03 41fdef7 99e3c03 ea48617 41fdef7 99e3c03 ea48617 41fdef7 ea48617 99e3c03 41fdef7 99e3c03 41fdef7 ea48617 99e3c03 ea48617 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 99e3c03 41fdef7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
import numpy as np
import os
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torchvision
from utils.richtext_utils import seed_everything
from sklearn.cluster import KMeans, SpectralClustering
# SelfAttentionLayers = [
# # 'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
# # 'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
# 'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
# # 'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
# 'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
# 'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
# 'mid_block.attentions.0.transformer_blocks.0.attn1',
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
# 'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
# 'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
# # 'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
# 'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
# # 'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
# # 'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
# # 'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
# # 'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
# ]
SelfAttentionLayers = [
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn1',
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn1',
'down_blocks.1.attentions.0.transformer_blocks.0.attn1',
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn1',
'down_blocks.2.attentions.0.transformer_blocks.0.attn1',
'down_blocks.2.attentions.1.transformer_blocks.0.attn1',
'mid_block.attentions.0.transformer_blocks.0.attn1',
'up_blocks.1.attentions.0.transformer_blocks.0.attn1',
'up_blocks.1.attentions.1.transformer_blocks.0.attn1',
'up_blocks.1.attentions.2.transformer_blocks.0.attn1',
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn1',
'up_blocks.2.attentions.1.transformer_blocks.0.attn1',
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn1',
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn1',
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn1',
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn1',
]
CrossAttentionLayers = [
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2',
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2',
'down_blocks.1.attentions.0.transformer_blocks.0.attn2',
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2',
'down_blocks.2.attentions.0.transformer_blocks.0.attn2',
'down_blocks.2.attentions.1.transformer_blocks.0.attn2',
'mid_block.attentions.0.transformer_blocks.0.attn2',
'up_blocks.1.attentions.0.transformer_blocks.0.attn2',
'up_blocks.1.attentions.1.transformer_blocks.0.attn2',
'up_blocks.1.attentions.2.transformer_blocks.0.attn2',
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2',
'up_blocks.2.attentions.1.transformer_blocks.0.attn2',
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2',
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2',
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2',
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
]
# CrossAttentionLayers = [
# 'down_blocks.0.attentions.0.transformer_blocks.0.attn2',
# 'down_blocks.0.attentions.1.transformer_blocks.0.attn2',
# 'down_blocks.1.attentions.0.transformer_blocks.0.attn2',
# 'down_blocks.1.attentions.1.transformer_blocks.0.attn2',
# 'down_blocks.2.attentions.0.transformer_blocks.0.attn2',
# 'down_blocks.2.attentions.1.transformer_blocks.0.attn2',
# 'mid_block.attentions.0.transformer_blocks.0.attn2',
# 'up_blocks.1.attentions.0.transformer_blocks.0.attn2',
# 'up_blocks.1.attentions.1.transformer_blocks.0.attn2',
# 'up_blocks.1.attentions.2.transformer_blocks.0.attn2',
# 'up_blocks.2.attentions.0.transformer_blocks.0.attn2',
# 'up_blocks.2.attentions.1.transformer_blocks.0.attn2',
# 'up_blocks.2.attentions.2.transformer_blocks.0.attn2',
# 'up_blocks.3.attentions.0.transformer_blocks.0.attn2',
# 'up_blocks.3.attentions.1.transformer_blocks.0.attn2',
# 'up_blocks.3.attentions.2.transformer_blocks.0.attn2'
# ]
# CrossAttentionLayers_XL = [
# 'up_blocks.0.attentions.0.transformer_blocks.1.attn2',
# 'up_blocks.0.attentions.0.transformer_blocks.2.attn2',
# 'up_blocks.0.attentions.0.transformer_blocks.3.attn2',
# 'up_blocks.0.attentions.0.transformer_blocks.4.attn2',
# 'up_blocks.0.attentions.0.transformer_blocks.5.attn2',
# 'up_blocks.0.attentions.0.transformer_blocks.6.attn2',
# 'up_blocks.0.attentions.0.transformer_blocks.7.attn2',
# ]
CrossAttentionLayers_XL = [
'down_blocks.2.attentions.1.transformer_blocks.3.attn2',
'down_blocks.2.attentions.1.transformer_blocks.4.attn2',
'mid_block.attentions.0.transformer_blocks.0.attn2',
'mid_block.attentions.0.transformer_blocks.1.attn2',
'mid_block.attentions.0.transformer_blocks.2.attn2',
'mid_block.attentions.0.transformer_blocks.3.attn2',
'up_blocks.0.attentions.0.transformer_blocks.1.attn2',
'up_blocks.0.attentions.0.transformer_blocks.2.attn2',
'up_blocks.0.attentions.0.transformer_blocks.3.attn2',
'up_blocks.0.attentions.0.transformer_blocks.4.attn2',
'up_blocks.0.attentions.0.transformer_blocks.5.attn2',
'up_blocks.0.attentions.0.transformer_blocks.6.attn2',
'up_blocks.0.attentions.0.transformer_blocks.7.attn2',
'up_blocks.1.attentions.0.transformer_blocks.0.attn2'
]
def split_attention_maps_over_steps(attention_maps):
r"""Function for splitting attention maps over steps.
Args:
attention_maps (dict): Dictionary of attention maps.
sampler_order (int): Order of the sampler.
"""
# This function splits attention maps into unconditional and conditional score and over steps
attention_maps_cond = dict() # Maps corresponding to conditional score
attention_maps_uncond = dict() # Maps corresponding to unconditional score
for layer in attention_maps.keys():
for step_num in range(len(attention_maps[layer])):
if step_num not in attention_maps_cond:
attention_maps_cond[step_num] = dict()
attention_maps_uncond[step_num] = dict()
attention_maps_uncond[step_num].update(
{layer: attention_maps[layer][step_num][:1]})
attention_maps_cond[step_num].update(
{layer: attention_maps[layer][step_num][1:2]})
return attention_maps_cond, attention_maps_uncond
def save_attention_heatmaps(attention_maps, tokens_vis, save_dir, prefix):
r"""Function to plot heatmaps for attention maps.
Args:
attention_maps (dict): Dictionary of attention maps per layer
save_dir (str): Directory to save attention maps
prefix (str): Filename prefix for html files
Returns:
Heatmaps, one per sample.
"""
html_names = []
idx = 0
html_list = []
for layer in attention_maps.keys():
if idx == 0:
# import ipdb;ipdb.set_trace()
# create a set of html files.
batch_size = attention_maps[layer].shape[0]
for sample_num in range(batch_size):
# html path
html_rel_path = os.path.join('sample_{}'.format(
sample_num), '{}.html'.format(prefix))
html_names.append(html_rel_path)
html_path = os.path.join(save_dir, html_rel_path)
os.makedirs(os.path.dirname(html_path), exist_ok=True)
html_list.append(open(html_path, 'wt'))
html_list[sample_num].write(
'<html><head></head><body><table>\n')
for sample_num in range(batch_size):
save_path = os.path.join(save_dir, 'sample_{}'.format(sample_num),
prefix, 'layer_{}'.format(layer)) + '.jpg'
Path(os.path.dirname(save_path)).mkdir(parents=True, exist_ok=True)
layer_name = 'layer_{}'.format(layer)
html_list[sample_num].write(
f'<tr><td><h1>{layer_name}</h1></td></tr>\n')
prefix_stem = prefix.split('/')[-1]
relative_image_path = os.path.join(
prefix_stem, 'layer_{}'.format(layer)) + '.jpg'
html_list[sample_num].write(
f'<tr><td><img src=\"{relative_image_path}\"></td></tr>\n')
plt.figure()
plt.clf()
nrows = 2
ncols = 7
fig, axs = plt.subplots(nrows=nrows, ncols=ncols)
fig.set_figheight(8)
fig.set_figwidth(28.5)
# axs[0].set_aspect('equal')
# axs[1].set_aspect('equal')
# axs[2].set_aspect('equal')
# axs[3].set_aspect('equal')
# axs[4].set_aspect('equal')
# axs[5].set_aspect('equal')
cmap = plt.get_cmap('YlOrRd')
for rid in range(nrows):
for cid in range(ncols):
tid = rid*ncols + cid
# import ipdb;ipdb.set_trace()
attention_map_cur = attention_maps[layer][sample_num, :, :, tid].numpy(
)
vmax = float(attention_map_cur.max())
vmin = float(attention_map_cur.min())
sns.heatmap(
attention_map_cur, annot=False, cbar=False, ax=axs[rid, cid],
cmap=cmap, vmin=vmin, vmax=vmax
)
axs[rid, cid].set_xlabel(tokens_vis[tid])
# axs[0].set_xlabel('Self attention')
# axs[1].set_xlabel('Temporal attention')
# axs[2].set_xlabel('T5 text attention')
# axs[3].set_xlabel('CLIP text attention')
# axs[4].set_xlabel('CLIP image attention')
# axs[5].set_xlabel('Null text token')
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
# fig.colorbar(sm, cax=axs[6])
fig.tight_layout()
plt.savefig(save_path, dpi=64)
plt.close('all')
if idx == (len(attention_maps.keys()) - 1):
for sample_num in range(batch_size):
html_list[sample_num].write('</table></body></html>')
html_list[sample_num].close()
idx += 1
return html_names
def create_recursive_html_link(html_path, save_dir):
r"""Function for creating recursive html links.
If the path is dir1/dir2/dir3/*.html,
we create chained directories
-dir1
dir1.html (has links to all children)
-dir2
dir2.html (has links to all children)
-dir3
dir3.html
Args:
html_path (str): Path to html file.
save_dir (str): Save directory.
"""
html_path_split = os.path.splitext(html_path)[0].split('/')
if len(html_path_split) == 1:
return
# First create the root directory
root_dir = html_path_split[0]
child_dir = html_path_split[1]
cur_html_path = os.path.join(save_dir, '{}.html'.format(root_dir))
if os.path.exists(cur_html_path):
fp = open(cur_html_path, 'r')
lines_written = fp.readlines()
fp.close()
fp = open(cur_html_path, 'a+')
child_path = os.path.join(root_dir, f'{child_dir}.html')
line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n'
if line_to_write not in lines_written:
fp.write('<html><head></head><body><table>\n')
fp.write(line_to_write)
fp.write('</table></body></html>')
fp.close()
else:
fp = open(cur_html_path, 'w')
child_path = os.path.join(root_dir, f'{child_dir}.html')
line_to_write = f'<tr><td><a href=\"{child_path}\">{child_dir}</a></td></tr>\n'
fp.write('<html><head></head><body><table>\n')
fp.write(line_to_write)
fp.write('</table></body></html>')
fp.close()
child_path = '/'.join(html_path.split('/')[1:])
save_dir = os.path.join(save_dir, root_dir)
create_recursive_html_link(child_path, save_dir)
def visualize_attention_maps(attention_maps_all, save_dir, width, height, tokens_vis):
r"""Function to visualize attention maps.
Args:
save_dir (str): Path to save attention maps
batch_size (int): Batch size
sampler_order (int): Sampler order
"""
rand_name = list(attention_maps_all.keys())[0]
nsteps = len(attention_maps_all[rand_name])
hw_ori = width * height
# html_path = save_dir + '.html'
text_input = save_dir.split('/')[-1]
# f = open(html_path, 'wt')
all_html_paths = []
for step_num in range(0, nsteps, 5):
# if cond_id == 'cond':
# attention_maps_cur = attention_maps_cond[step_num]
# else:
# attention_maps_cur = attention_maps_uncond[step_num]
attention_maps = dict()
for layer in attention_maps_all.keys():
attention_ind = attention_maps_all[layer][step_num].cpu()
# Attention maps are of shape [batch_size, nkeys, 77]
# since they are averaged out while collecting from hooks to save memory.
# Now split the heads from batch dimension
bs, hw, nclip = attention_ind.shape
down_ratio = np.sqrt(hw_ori // hw)
width_cur = int(width // down_ratio)
height_cur = int(height // down_ratio)
attention_ind = attention_ind.reshape(
bs, height_cur, width_cur, nclip)
attention_maps[layer] = attention_ind
# Obtain heatmaps corresponding to random heads and individual heads
html_names = save_attention_heatmaps(
attention_maps, tokens_vis, save_dir=save_dir, prefix='step_{}/attention_maps_cond'.format(
step_num)
)
# Write the logic for recursively creating pages
for html_name_cur in html_names:
all_html_paths.append(os.path.join(text_input, html_name_cur))
save_dir_root = '/'.join(save_dir.split('/')[0:-1])
for html_pth in all_html_paths:
create_recursive_html_link(html_pth, save_dir_root)
def plot_attention_maps(atten_map_list, obj_tokens, save_dir, seed, tokens_vis=None):
for i, attn_map in enumerate(atten_map_list):
n_obj = len(attn_map)
plt.figure()
plt.clf()
fig, axs = plt.subplots(
ncols=n_obj+1, gridspec_kw=dict(width_ratios=[1 for _ in range(n_obj)]+[0.1]))
fig.set_figheight(3)
fig.set_figwidth(3*n_obj+0.1)
cmap = plt.get_cmap('YlOrRd')
vmax = 0
vmin = 1
for tid in range(n_obj):
attention_map_cur = attn_map[tid]
vmax = max(vmax, float(attention_map_cur.max()))
vmin = min(vmin, float(attention_map_cur.min()))
for tid in range(n_obj):
sns.heatmap(
attn_map[tid][0], annot=False, cbar=False, ax=axs[tid],
cmap=cmap, vmin=vmin, vmax=vmax
)
axs[tid].set_axis_off()
if tokens_vis is not None:
if tid == n_obj-1:
axs_xlabel = 'other tokens'
else:
axs_xlabel = ''
for token_id in obj_tokens[tid]:
axs_xlabel += ' ' + tokens_vis[token_id.item() -
1][:-len('</w>')]
axs[tid].set_title(axs_xlabel)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
fig.colorbar(sm, cax=axs[-1])
fig.tight_layout()
canvas = fig.canvas
canvas.draw()
width, height = canvas.get_width_height()
img = np.frombuffer(canvas.tostring_rgb(),
dtype='uint8').reshape((height, width, 3))
plt.savefig(os.path.join(
save_dir, 'average_seed%d_attn%d.jpg' % (seed, i)), dpi=100)
plt.close('all')
return img
def get_average_attention_maps(attention_maps, save_dir, width, height, obj_tokens, seed=0, tokens_vis=None,
preprocess=False):
r"""Function to visualize attention maps.
Args:
save_dir (str): Path to save attention maps
batch_size (int): Batch size
sampler_order (int): Sampler order
"""
# Split attention maps over steps
attention_maps_cond, _ = split_attention_maps_over_steps(
attention_maps
)
nsteps = len(attention_maps_cond)
hw_ori = width * height
attention_maps = []
for obj_token in obj_tokens:
attention_maps.append([])
for step_num in range(nsteps):
attention_maps_cur = attention_maps_cond[step_num]
for layer in attention_maps_cur.keys():
if step_num < 10 or layer not in CrossAttentionLayers:
continue
attention_ind = attention_maps_cur[layer].cpu()
# Attention maps are of shape [batch_size, nkeys, 77]
# since they are averaged out while collecting from hooks to save memory.
# Now split the heads from batch dimension
bs, hw, nclip = attention_ind.shape
down_ratio = np.sqrt(hw_ori // hw)
width_cur = int(width // down_ratio)
height_cur = int(height // down_ratio)
attention_ind = attention_ind.reshape(
bs, height_cur, width_cur, nclip)
for obj_id, obj_token in enumerate(obj_tokens):
if obj_token[0] == -1:
attention_map_prev = torch.stack(
[attention_maps[i][-1] for i in range(obj_id)]).sum(0)
attention_maps[obj_id].append(
attention_map_prev.max()-attention_map_prev)
else:
obj_attention_map = attention_ind[:, :, :, obj_token].max(-1, True)[
0].permute([3, 0, 1, 2])
# obj_attention_map = attention_ind[:, :, :, obj_token].mean(-1, True).permute([3, 0, 1, 2])
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width),
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True)
attention_maps[obj_id].append(obj_attention_map)
attention_maps_averaged = []
for obj_id, obj_token in enumerate(obj_tokens):
if obj_id == len(obj_tokens) - 1:
attention_maps_averaged.append(
torch.cat(attention_maps[obj_id]).mean(0))
else:
attention_maps_averaged.append(
torch.cat(attention_maps[obj_id]).mean(0))
attention_maps_averaged_normalized = []
attention_maps_averaged_sum = torch.cat(attention_maps_averaged).sum(0)
for obj_id, obj_token in enumerate(obj_tokens):
attention_maps_averaged_normalized.append(
attention_maps_averaged[obj_id]/attention_maps_averaged_sum)
if obj_tokens[-1][0] != -1:
attention_maps_averaged_normalized = (
torch.cat(attention_maps_averaged)/0.001).softmax(0)
attention_maps_averaged_normalized = [
attention_maps_averaged_normalized[i:i+1] for i in range(attention_maps_averaged_normalized.shape[0])]
if preprocess:
selem = square(5)
selem = square(3)
selem = square(1)
attention_maps_averaged_eroded = [erosion(skimage.img_as_float(
map[0].numpy()*255), selem) for map in attention_maps_averaged_normalized[:2]]
attention_maps_averaged_eroded = [(torch.from_numpy(map).unsqueeze(
0)/255. > 0.8).float() for map in attention_maps_averaged_eroded]
attention_maps_averaged_eroded.append(
1 - torch.cat(attention_maps_averaged_eroded).sum(0, True))
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized,
attention_maps_averaged_eroded], obj_tokens, save_dir, seed, tokens_vis)
attention_maps_averaged_eroded = [attn_mask.unsqueeze(1).repeat(
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_eroded]
return attention_maps_averaged_eroded
else:
plot_attention_maps([attention_maps_averaged, attention_maps_averaged_normalized],
obj_tokens, save_dir, seed, tokens_vis)
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
return attention_maps_averaged_normalized
def get_average_attention_maps_threshold(attention_maps, save_dir, width, height, obj_tokens, seed=0, threshold=0.02):
r"""Function to visualize attention maps.
Args:
save_dir (str): Path to save attention maps
batch_size (int): Batch size
sampler_order (int): Sampler order
"""
_EPS = 1e-8
# Split attention maps over steps
attention_maps_cond, _ = split_attention_maps_over_steps(
attention_maps
)
nsteps = len(attention_maps_cond)
hw_ori = width * height
attention_maps = []
for obj_token in obj_tokens:
attention_maps.append([])
# for each side prompt, get attention maps for all steps and all layers
for step_num in range(nsteps):
attention_maps_cur = attention_maps_cond[step_num]
for layer in attention_maps_cur.keys():
attention_ind = attention_maps_cur[layer].cpu()
bs, hw, nclip = attention_ind.shape
down_ratio = np.sqrt(hw_ori // hw)
width_cur = int(width // down_ratio)
height_cur = int(height // down_ratio)
attention_ind = attention_ind.reshape(
bs, height_cur, width_cur, nclip)
for obj_id, obj_token in enumerate(obj_tokens):
if attention_ind.shape[1] > width//2:
continue
if obj_token[0] != -1:
obj_attention_map = attention_ind[:, :, :,
obj_token].mean(-1, True).permute([3, 0, 1, 2])
obj_attention_map = torchvision.transforms.functional.resize(obj_attention_map, (height, width),
interpolation=torchvision.transforms.InterpolationMode.BICUBIC, antialias=True)
attention_maps[obj_id].append(obj_attention_map)
# average of all steps and layers, thresholding
attention_maps_thres = []
attention_maps_averaged = []
for obj_id, obj_token in enumerate(obj_tokens):
if obj_token[0] != -1:
average_map = torch.cat(attention_maps[obj_id]).mean(0)
attention_maps_averaged.append(average_map)
attention_maps_thres.append((average_map > threshold).float())
# get the remaining region except for the original prompt
attention_maps_averaged_normalized = []
attention_maps_averaged_sum = torch.cat(attention_maps_thres).sum(0) + _EPS
for obj_id, obj_token in enumerate(obj_tokens):
if obj_token[0] != -1:
attention_maps_averaged_normalized.append(
attention_maps_thres[obj_id]/attention_maps_averaged_sum)
else:
attention_map_prev = torch.stack(
attention_maps_averaged_normalized).sum(0)
attention_maps_averaged_normalized.append(1.-attention_map_prev)
plot_attention_maps(
[attention_maps_averaged, attention_maps_averaged_normalized], save_dir, seed)
attention_maps_averaged_normalized = [attn_mask.unsqueeze(1).repeat(
[1, 4, 1, 1]).cuda() for attn_mask in attention_maps_averaged_normalized]
# attention_maps_averaged_normalized = attention_maps_averaged_normalized.unsqueeze(1).repeat([1, 4, 1, 1]).cuda()
return attention_maps_averaged_normalized
def get_token_maps(selfattn_maps, crossattn_maps, n_maps, save_dir, width, height, obj_tokens, kmeans_seed=0, tokens_vis=None,
preprocess=False, segment_threshold=0.3, num_segments=5, return_vis=False, save_attn=False):
r"""Function to visualize attention maps.
Args:
save_dir (str): Path to save attention maps
batch_size (int): Batch size
sampler_order (int): Sampler order
"""
resolution = 32
# attn_maps_1024 = [attn_map for attn_map in selfattn_maps.values(
# ) if attn_map.shape[1] == resolution**2]
# attn_maps_1024 = torch.cat(attn_maps_1024).mean(0).cpu().numpy()
attn_maps_1024 = {8: [], 16: [], 32: [], 64: []}
for attn_map in selfattn_maps.values():
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
if resolution_map != resolution:
continue
# attn_map = torch.nn.functional.interpolate(rearrange(attn_map, '1 c (h w) -> 1 c h w', h=resolution_map), (resolution, resolution),
# mode='bicubic', antialias=True)
# attn_map = rearrange(attn_map, '1 (h w) a b -> 1 (a b) h w', h=resolution_map)
attn_map = attn_map.reshape(
1, resolution_map, resolution_map, resolution_map**2).permute([3, 0, 1, 2]).float()
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
mode='bicubic', antialias=True)
attn_maps_1024[resolution_map].append(attn_map.permute([1, 2, 3, 0]).reshape(
1, resolution**2, resolution_map**2))
attn_maps_1024 = torch.cat([torch.cat(v).mean(0).cpu()
for v in attn_maps_1024.values() if len(v) > 0], -1).numpy()
if save_attn:
print('saving self-attention maps...', attn_maps_1024.shape)
torch.save(torch.from_numpy(attn_maps_1024),
'results/maps/selfattn_maps.pth')
seed_everything(kmeans_seed)
# import ipdb;ipdb.set_trace()
# kmeans = KMeans(n_clusters=num_segments,
# n_init=10).fit(attn_maps_1024)
# clusters = kmeans.labels_
# clusters = clusters.reshape(resolution, resolution)
# mesh = np.array(np.meshgrid(range(resolution), range(resolution), indexing='ij'), dtype=np.float32)/resolution
# dists = mesh.reshape(2, -1).T
# delta = 0.01
# spatial_sim = rbf_kernel(dists, dists)*delta
sc = SpectralClustering(num_segments, affinity='precomputed', n_init=100,
assign_labels='kmeans')
clusters = sc.fit_predict(attn_maps_1024)
clusters = clusters.reshape(resolution, resolution)
fig = plt.figure()
plt.imshow(clusters)
plt.axis('off')
plt.savefig(os.path.join(save_dir, 'segmentation_k%d_seed%d.jpg' % (num_segments, kmeans_seed)),
bbox_inches='tight', pad_inches=0)
if return_vis:
canvas = fig.canvas
canvas.draw()
cav_width, cav_height = canvas.get_width_height()
segments_vis = np.frombuffer(canvas.tostring_rgb(),
dtype='uint8').reshape((cav_height, cav_width, 3))
plt.close()
# label the segmentation mask using cross-attention maps
cross_attn_maps_1024 = []
for attn_map in crossattn_maps.values():
resolution_map = np.sqrt(attn_map.shape[1]).astype(int)
# if resolution_map != 16:
# continue
attn_map = attn_map.reshape(
1, resolution_map, resolution_map, -1).permute([0, 3, 1, 2]).float()
attn_map = torch.nn.functional.interpolate(attn_map, (resolution, resolution),
mode='bicubic', antialias=True)
cross_attn_maps_1024.append(attn_map.permute([0, 2, 3, 1]))
cross_attn_maps_1024 = torch.cat(
cross_attn_maps_1024).mean(0).cpu().numpy()
normalized_span_maps = []
for token_ids in obj_tokens:
span_token_maps = cross_attn_maps_1024[:, :, token_ids.numpy()]
normalized_span_map = np.zeros_like(span_token_maps)
for i in range(span_token_maps.shape[-1]):
curr_noun_map = span_token_maps[:, :, i]
normalized_span_map[:, :, i] = (
# curr_noun_map - np.abs(curr_noun_map.min())) / curr_noun_map.max()
curr_noun_map - np.abs(curr_noun_map.min())) / (curr_noun_map.max()-curr_noun_map.min())
normalized_span_maps.append(normalized_span_map)
foreground_token_maps = [np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze(
) for normalized_span_map in normalized_span_maps]
background_map = np.zeros([clusters.shape[0], clusters.shape[1]]).squeeze()
for c in range(num_segments):
cluster_mask = np.zeros_like(clusters)
cluster_mask[clusters == c] = 1.
is_foreground = False
for normalized_span_map, foreground_nouns_map, token_ids in zip(normalized_span_maps, foreground_token_maps, obj_tokens):
score_maps = [cluster_mask * normalized_span_map[:, :, i]
for i in range(len(token_ids))]
scores = [score_map.sum() / cluster_mask.sum()
for score_map in score_maps]
if max(scores) > segment_threshold:
foreground_nouns_map += cluster_mask
is_foreground = True
if not is_foreground:
background_map += cluster_mask
foreground_token_maps.append(background_map)
# resize the token maps and visualization
resized_token_maps = torch.cat([torch.nn.functional.interpolate(torch.from_numpy(token_map).unsqueeze(0).unsqueeze(
0), (height, width), mode='bicubic', antialias=True)[0] for token_map in foreground_token_maps]).clamp(0, 1)
resized_token_maps = resized_token_maps / \
(resized_token_maps.sum(0, True)+1e-8)
resized_token_maps = [token_map.unsqueeze(
0) for token_map in resized_token_maps]
foreground_token_maps = [token_map[None, :, :]
for token_map in foreground_token_maps]
if preprocess:
selem = square(5)
eroded_token_maps = torch.stack([torch.from_numpy(erosion(skimage.img_as_float(
map[0].numpy()*255), selem))/255. for map in resized_token_maps[:-1]]).clamp(0, 1)
# import ipdb; ipdb.set_trace()
eroded_background_maps = (1-eroded_token_maps.sum(0, True)).clamp(0, 1)
eroded_token_maps = torch.cat([eroded_token_maps, eroded_background_maps])
eroded_token_maps = eroded_token_maps / (eroded_token_maps.sum(0, True)+1e-8)
resized_token_maps = [token_map.unsqueeze(
0) for token_map in eroded_token_maps]
token_maps_vis = plot_attention_maps([foreground_token_maps, resized_token_maps], obj_tokens,
save_dir, kmeans_seed, tokens_vis)
resized_token_maps = [token_map.unsqueeze(1).repeat(
[1, 4, 1, 1]).to(attn_map.dtype).cuda() for token_map in resized_token_maps]
if return_vis:
return resized_token_maps, segments_vis, token_maps_vis
else:
return resized_token_maps
|