File size: 18,796 Bytes
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c42b4c
4c022fe
 
 
 
0a499ee
 
 
ba87c8b
0a499ee
4c022fe
 
baa687a
 
d019488
 
 
baa687a
d019488
 
 
e14c67a
 
 
 
 
 
 
 
4c022fe
 
 
 
 
 
51be712
4c022fe
 
 
 
 
 
ed9d237
d019488
4c022fe
 
 
f5cbba2
 
4c022fe
 
e14c67a
d019488
4c022fe
 
 
d0745b6
4c022fe
 
 
 
 
 
 
 
 
 
 
 
ed9d237
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
ab7db7f
4c022fe
ab7db7f
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b624d65
4c022fe
 
 
556cf26
4c022fe
 
baa687a
d019488
4c022fe
 
556cf26
4c022fe
 
 
 
 
f5cbba2
4c022fe
 
 
 
 
69e92de
 
 
 
 
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa687a
556cf26
b624d65
8f96b94
baa687a
4c022fe
ba87c8b
 
 
4c022fe
f5cbba2
4c022fe
bc4d8bb
4c022fe
 
 
 
ed9d237
d019488
4c022fe
f5cbba2
 
 
 
 
 
 
 
 
4c022fe
bc4d8bb
556cf26
4c022fe
 
ae61c93
ed9d237
d019488
4c022fe
f5cbba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db5f99
4c022fe
5db5f99
4c022fe
 
 
 
ed9d237
d019488
4c022fe
fb8cc1d
5db5f99
f5cbba2
 
 
5db5f99
ae61c93
d019488
ae61c93
 
5db5f99
fb8cc1d
 
 
5db5f99
 
f5cbba2
 
 
5db5f99
 
 
f5cbba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db5f99
f5cbba2
5db5f99
 
f5cbba2
 
5db5f99
f5cbba2
 
 
 
5db5f99
 
f5cbba2
 
5db5f99
ed9d237
d019488
fb8cc1d
f5cbba2
5db5f99
 
f5cbba2
 
5db5f99
 
f5cbba2
 
 
5db5f99
 
f5cbba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db5f99
fb8cc1d
5db5f99
 
fb8cc1d
 
5db5f99
 
 
 
 
 
 
 
 
 
 
 
 
 
32974d5
5db5f99
 
 
 
ed9d237
d019488
fb8cc1d
4c022fe
5db5f99
 
4c022fe
 
 
 
 
 
ed9d237
d019488
4c022fe
 
b624d65
 
4c022fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed9d237
d019488
4c022fe
b624d65
d019488
4c022fe
e14c67a
4c022fe
 
7b1dafa
3c42b4c
4c022fe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import math
import random
import os
import json
import time
import argparse
import torch
import numpy as np
from torchvision import transforms

from models.region_diffusion import RegionDiffusion
from utils.attention_utils import get_token_maps
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\
    get_attention_control_input, get_gradient_guidance_input


import gradio as gr
from PIL import Image, ImageOps


help_text = """
If you are encountering an error or not achieving your desired outcome, here are some potential reasons and recommendations to consider:
1. If you format only a portion of a word rather than the complete word, an error may occur. 
2. The token map may not always accurately capture the region of the formatted tokens. If you're experiencing this problem, experiment with selecting more or fewer tokens to expand or reduce the area covered by the token maps.
3. If you use font color and get completely corrupted results, you may consider decrease the color weight lambda.
4. Consider using a different seed.
"""


canvas_html = """<iframe id='rich-text-root' style='width:100%' height='360px' src='file=rich-text-to-json-iframe.html' frameborder='0' scrolling='no'></iframe>"""
get_js_data = """
async (text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, rich_text_input) => {
  const richEl = document.getElementById("rich-text-root");
  const data = richEl? richEl.contentDocument.body._data : {};
  return [text_input, negative_prompt, height, width, seed, steps, guidance_weight, color_guidance_weight, JSON.stringify(data)];
}
"""
set_js_data = """
async (text_input) => {
  const richEl = document.getElementById("rich-text-root");
  const data = text_input ? JSON.parse(text_input) : null;
  if (richEl && data) richEl.contentDocument.body.setQuillContents(data);
}
"""


def main():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = RegionDiffusion(device)

    def generate(
        text_input: str,
        negative_text: str,
        height: int,
        width: int,
        seed: int,
        steps: int,
        guidance_weight: float,
        color_guidance_weight: float,
        rich_text_input: str
    ):
        run_dir = 'results/'
        # Load region diffusion model.
        height = int(height)
        width = int(width)
        steps = 41 if not steps else steps
        guidance_weight = 8.5 if not guidance_weight else guidance_weight
        text_input = rich_text_input if rich_text_input != '' else text_input
        print('text_input', text_input)
        # parse json to span attributes
        base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
            color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
                json.loads(text_input), device)

        # create control input for region diffusion
        region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
            model, base_text_prompt, style_text_prompts, footnote_text_prompts,
            footnote_target_tokens, color_text_prompts, color_names)

        # create control input for cross attention
        text_format_dict = get_attention_control_input(
            model, base_tokens, size_text_prompts_and_sizes)

        # create control input for region guidance
        text_format_dict, color_target_token_ids = get_gradient_guidance_input(
            model, base_tokens, color_text_prompts, color_rgbs, text_format_dict, color_guidance_weight=color_guidance_weight)

        seed_everything(seed)

        # get token maps from plain text to image generation.
        begin_time = time.time()
        if model.attention_maps is None:
            model.register_evaluation_hooks()
        else:
            model.reset_attention_maps()
        plain_img = model.produce_attn_maps([base_text_prompt], [negative_text],
                                            height=height, width=width, num_inference_steps=steps,
                                            guidance_scale=guidance_weight)
        print('time lapses to get attention maps: %.4f' % (time.time()-begin_time))
        color_obj_masks, _ = get_token_maps(
            model.attention_maps, run_dir, width//8, height//8, color_target_token_ids, seed)
        model.masks, token_maps = get_token_maps(
            model.attention_maps, run_dir, width//8, height//8, region_target_token_ids, seed, base_tokens)
        color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width),
                                                        interpolation=transforms.InterpolationMode.BICUBIC,
                                                        antialias=True)
                        for color_obj_mask in color_obj_masks]
        text_format_dict['color_obj_atten'] = color_obj_masks
        model.remove_evaluation_hooks()

        # generate image from rich text
        begin_time = time.time()
        seed_everything(seed)
        rich_img = model.prompt_to_img(region_text_prompts, [negative_text],
                                    height=height, width=width, num_inference_steps=steps,
                                    guidance_scale=guidance_weight, use_grad_guidance=use_grad_guidance,
                                    text_format_dict=text_format_dict)
        print('time lapses to generate image from rich text: %.4f' %
            (time.time()-begin_time))
        return [plain_img[0], rich_img[0], token_maps]

    with gr.Blocks() as demo:
        gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">Expressive Text-to-Image Generation with Rich Text</h1>
                   <p> <a href="https://rich-text-to-image.github.io">[Website]</a> | <a href="https://github.com/SongweiGe/rich-text-to-image">[Code]</a> | <a href="https://arxiv.org/abs/2304.06720">[Paper]</a> <p/> """)
        with gr.Row():
            with gr.Column():
                rich_text_el = gr.HTML(canvas_html, elem_id="canvas_html")
                rich_text_input = gr.Textbox(value="", visible=False)
                text_input = gr.Textbox(
                    label='Rich-text JSON Input',
                    visible=False,
                    max_lines=1,
                    placeholder='Example: \'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}\'')
                negative_prompt = gr.Textbox(
                    label='Negative Prompt',
                    max_lines=1,
                    placeholder='Example: poor quality, blurry, dark, low resolution, low quality, worst quality')
                seed = gr.Slider(label='Seed',
                                 minimum=0,
                                 maximum=100000,
                                 step=1,
                                 value=6)
                color_guidance_weight = gr.Slider(label='Color weight lambda',
                                                  minimum=0,
                                                  maximum=2,
                                                  step=0.1,
                                                  value=0.5)
                with gr.Accordion('Other Parameters', open=False):
                    steps = gr.Slider(label='Number of Steps',
                                          minimum=0,
                                          maximum=500,
                                          step=1,
                                          value=41)
                    guidance_weight = gr.Slider(label='CFG weight',
                                               minimum=0,
                                               maximum=50,
                                               step=0.1,
                                               value=8.5)
                    width = gr.Dropdown(choices=[512, 768, 896],
                                    value=512,
                                    label='Width',
                                    visible=True)
                    height = gr.Dropdown(choices=[512, 768, 896],
                                    value=512,
                                    label='height',
                                    visible=True)
                    
                with gr.Row():
                    with gr.Column(scale=1, min_width=100):
                        generate_button = gr.Button("Generate")

            with gr.Column():
                richtext_result = gr.Image(label='Rich-text')
                richtext_result.style(height=512)
                with gr.Row():
                    plaintext_result = gr.Image(label='Plain-text')
                    token_map = gr.Image(label='Token Maps')

        with gr.Row():
            gr.Markdown(help_text)

        with gr.Row():
            style_examples = [
                [
                    '{"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"night sky filled with stars"},{"insert":" above a "},{"attributes":{"font":"roboto"},"insert":"turbulent sea with giant waves"}]}',
                    '',
                    512,
                    512,
                    6,
                    1,
                    None
                ],
                [
                    '{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":""}]}',
                    '',
                    512,
                    512,
                    3,
                    1,
                    None
                ],
                [
                    '{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}',
                    'worst quality, dark, poor quality',
                    512,
                    512,
                    9,
                    1,
                    None
                ],
            ]
            gr.Examples(examples=style_examples,
                        label='Font style examples',
                        inputs=[
                            text_input,
                            negative_prompt,
                            height,
                            width,
                            seed,
                            color_guidance_weight,
                            rich_text_input,
                        ],
                        outputs=[
                            plaintext_result,
                            richtext_result,
                            token_map,
                        ],
                        fn=generate,
                        # cache_examples=True,
                        examples_per_page=20)
        with gr.Row():
            footnote_examples = [
                [
                    '{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}',
                    '',
                    512,
                    512,
                    6,
                    1,
                    None
                ],
                [
                    '{"ops":[{"insert":"A "},{"attributes":{"link":"kitchen island with a built-in oven and a stove with gas burners "},"insert":"kitchen island"},{"insert":" next to a "},{"attributes":{"link":"an open refrigerator stocked with fresh produce, dairy products, and beverages. "},"insert":"refrigerator"},{"insert":", by James McDonald and Joarc Architects, home, interior, octane render, deviantart, cinematic, key art, hyperrealism, sun light, sunrays, canon eos c 300, ƒ 1.8, 35 mm, 8k, medium - format print"}]}',
                    '',
                    512,
                    512,
                    6,
                    1,
                    None
                ],
                [
                    '{"ops":[{"insert":"A "},{"attributes":{"link":"Art inspired by kung fu panda, elder, asian art, volumetric lighting, dramatic scene, ultra detailed, realism, chinese"},"insert":"panda"},{"insert":" standing on a cliff by a waterfall, wildlife photography, photograph, high quality, wildlife, f 1.8, soft focus, 8k, national geographic, award - winning photograph by nick nichols"}]}',
                    '',
                    512,
                    512,
                    6,
                    1,
                    None
                ],
            ]
            
            gr.Examples(examples=footnote_examples,
                        label='Footnote examples',
                        inputs=[
                            text_input,
                            negative_prompt,
                            height,
                            width,
                            seed,
                            color_guidance_weight,
                            rich_text_input,
                        ],
                        outputs=[
                            plaintext_result,
                            richtext_result,
                            token_map,
                        ],
                        fn=generate,
                        # cache_examples=True,
                        examples_per_page=20)
        with gr.Row():
            color_examples = [
                [
                    '{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}',
                    '',
                    512,
                    512,
                    6,
                    1,
                    None
                ],
                [
                    '{"ops":[{"insert":"A mesmerizing sight that captures the beauty of a "},{"attributes":{"color":"#4775fc"},"insert":"rose"},{"insert":" blooming, close up"}]}',
                    '',
                    512,
                    512,
                    9,
                    1,
                    None
                ],
                [
                    '{"ops":[{"insert":"A "},{"attributes":{"color":"#FFD700"},"insert":"marble statue of a wolf\'s head and shoulder"},{"insert":", surrounded by colorful flowers michelangelo, detailed, intricate, full of color, led lighting, trending on artstation, 4 k, hyperrealistic, 3 5 mm, focused, extreme details, unreal engine 5, masterpiece "}]}',
                    '',
                    512,
                    512,
                    5,
                    0.6,
                    None
                ],
            ]
            gr.Examples(examples=color_examples,
                        label='Font color examples',
                        inputs=[
                            text_input,
                            negative_prompt,
                            height,
                            width,
                            seed,
                            color_guidance_weight,
                            rich_text_input,
                        ],
                        outputs=[
                            plaintext_result,
                            richtext_result,
                            token_map,
                        ],
                        fn=generate,
                        # cache_examples=True,
                        examples_per_page=20)
        with gr.Row():
            size_examples = [
                [
                    '{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "60px"}, "insert": "pineapple"}, {"insert": ", pepperoni, and mushroom on the top, 4k, photorealistic"}]}',
                    'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
                    512,
                    512,
                    13,
                    1,
                    None
                ],
                [
                    '{"ops": [{"insert": "A pizza with pineapple, "}, {"attributes": {"size": "20px"}, "insert": "pepperoni"}, {"insert": ", and mushroom on the top, 4k, photorealistic"}]}',
                    'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
                    512,
                    512,
                    13,
                    1,
                    None
                ],
                [
                    '{"ops": [{"insert": "A pizza with pineapple, pepperoni, and "}, {"attributes": {"size": "70px"}, "insert": "mushroom"}, {"insert": " on the top, 4k, photorealistic"}]}',
                    'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
                    512,
                    512,
                    13,
                    1,
                    None
                ],
            ]
            gr.Examples(examples=size_examples,
                        label='Font size examples',
                        inputs=[
                            text_input,
                            negative_prompt,
                            height,
                            width,
                            seed,
                            color_guidance_weight,
                            rich_text_input,
                        ],
                        outputs=[
                            plaintext_result,
                            richtext_result,
                            token_map,
                        ],
                        fn=generate,
                        # cache_examples=True,
                        examples_per_page=20)
        generate_button.click(
            fn=generate,
            inputs=[
                text_input,
                negative_prompt,
                height,
                width,
                seed,
                steps,
                guidance_weight,
                color_guidance_weight,
                rich_text_input
            ],
            outputs=[plaintext_result, richtext_result, token_map],
            _js=get_js_data
        )
        text_input.change(fn=None, inputs=[text_input], outputs=None, _js=set_js_data, queue=False)
    demo.queue(concurrency_count=1)
    demo.launch(share=False)


if __name__ == "__main__":
    main()