Spaces:
Runtime error
Runtime error
Commit
•
c144567
1
Parent(s):
1128191
[Don't merge yet] Simplify inference (#1)
Browse files- [Don't merge yet] Simplify inference (3ddb077c18b666e1bba594087dc887b87824472c)
Co-authored-by: Patrick von Platen <patrickvonplaten@users.noreply.huggingface.co>
app.py
CHANGED
@@ -9,12 +9,9 @@ import gradio as gr
|
|
9 |
import numpy as np
|
10 |
import PIL.Image
|
11 |
import torch
|
12 |
-
from lcm_pipeline import LatentConsistencyModelPipeline
|
13 |
-
from lcm_scheduler import LCMScheduler
|
14 |
|
15 |
-
from diffusers import
|
16 |
-
|
17 |
-
from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor
|
18 |
|
19 |
import os
|
20 |
import torch
|
@@ -34,45 +31,8 @@ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
|
|
34 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
35 |
DTYPE = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Initalize Diffusers Model:
|
41 |
-
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
|
42 |
-
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
|
43 |
-
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
44 |
-
config = UNet2DConditionModel.load_config(model_id, subfolder="unet")
|
45 |
-
config["time_cond_proj_dim"] = 256
|
46 |
-
|
47 |
-
unet = UNet2DConditionModel.from_config(config)
|
48 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker")
|
49 |
-
feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor")
|
50 |
-
|
51 |
-
# Initalize Scheduler:
|
52 |
-
scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon")
|
53 |
-
|
54 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
55 |
-
|
56 |
-
if torch.cuda.is_available():
|
57 |
-
# Replace the unet with LCM:
|
58 |
-
# lcm_unet_ckpt = hf_hub_download("SimianLuo/LCM_Dreamshaper_v7", filename="LCM_Dreamshaper_v7_4k.safetensors", token=HF_TOKEN)
|
59 |
-
lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors"
|
60 |
-
ckpt = load_file(lcm_unet_ckpt)
|
61 |
-
m, u = unet.load_state_dict(ckpt, strict=False)
|
62 |
-
if len(m) > 0:
|
63 |
-
print("missing keys:")
|
64 |
-
print(m)
|
65 |
-
if len(u) > 0:
|
66 |
-
print("unexpected keys:")
|
67 |
-
print(u)
|
68 |
-
|
69 |
-
|
70 |
-
# LCM Pipeline:
|
71 |
-
pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor)
|
72 |
-
pipe = pipe.to(torch_device="cuda", torch_dtype=DTYPE)
|
73 |
-
|
74 |
-
if USE_TORCH_COMPILE:
|
75 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
76 |
|
77 |
|
78 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
9 |
import numpy as np
|
10 |
import PIL.Image
|
11 |
import torch
|
|
|
|
|
12 |
|
13 |
+
from diffusers import DiffusionPipeline
|
14 |
+
import torch
|
|
|
15 |
|
16 |
import os
|
17 |
import torch
|
|
|
31 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
32 |
DTYPE = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse
|
33 |
|
34 |
+
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img")
|
35 |
+
pipe.to(torch_device="cuda", torch_dtype=DTYPE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|