#!/usr/bin/env python from __future__ import annotations import os import random import time import gradio as gr import numpy as np import PIL.Image import torch from lcm_pipeline import LatentConsistencyModelPipeline from lcm_scheduler import LCMScheduler from diffusers import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor import os import torch from tqdm import tqdm from safetensors.torch import load_file from huggingface_hub import hf_hub_download DESCRIPTION = '''# Latent Consistency Model #### Distilled from Dreamshaper v7 fine-tune of [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). [Project page](https://latent-consistency-models.github.io) ''' if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" DTYPE = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse model_id = "digiplay/DreamShaper_7" # Initalize Diffusers Model: vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae") text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder") tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer") config = UNet2DConditionModel.load_config(model_id, subfolder="unet") config["time_cond_proj_dim"] = 256 unet = UNet2DConditionModel.from_config(config) safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker") feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor") # Initalize Scheduler: scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon") HF_TOKEN = os.environ.get("HF_TOKEN", None) if torch.cuda.is_available(): # Replace the unet with LCM: # lcm_unet_ckpt = hf_hub_download("SimianLuo/LCM_Dreamshaper_v7", filename="LCM_Dreamshaper_v7_4k.safetensors", token=HF_TOKEN) lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors" ckpt = load_file(lcm_unet_ckpt) m, u = unet.load_state_dict(ckpt, strict=False) if len(m) > 0: print("missing keys:") print(m) if len(u) > 0: print("unexpected keys:") print(u) # LCM Pipeline: pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) pipe = pipe.to(torch_device="cuda", torch_dtype=DTYPE) if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def generate( prompt: str, seed: int = 0, width: int = 512, height: int = 512, guidance_scale: float = 8.0, num_inference_steps: int = 4, num_images: int = 4, randomize_seed: bool = False, progress = gr.Progress(track_tqdm=True) ) -> PIL.Image.Image: seed = randomize_seed_fn(seed, randomize_seed) torch.manual_seed(seed) start_time = time.time() result = pipe( prompt=prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, lcm_origin_steps=50, output_type="pil", ).images print(time.time() - start_time) return result, seed examples = [ "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", grid=[2] ) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True ) randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale for base", minimum=2, maximum=14, step=0.1, value=8.0, ) num_inference_steps = gr.Slider( label="Number of inference steps for base", minimum=1, maximum=8, step=1, value=4, ) # with gr.Row(): # num_images = gr.Slider( # label="Number of images" # minimum=1, # maximum=8, # step=1, # value=4, # ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(api_open=False) # demo.queue(max_size=20).launch() demo.launch()