FRESCO / video_blend.py
SingleZombie
upload files
ff715ca
import argparse
import os
import platform
import struct
import subprocess
import time
from typing import List
import cv2
import numpy as np
import torch.multiprocessing as mp
from numba import njit
import sys
sys.path.append("./src/ebsynth/")
import blender.histogram_blend as histogram_blend
from blender.guide import (BaseGuide, ColorGuide, EdgeGuide, PositionalGuide,
TemporalGuide)
from blender.poisson_fusion import poisson_fusion
from blender.video_sequence import VideoSequence
from flow.flow_utils import flow_calc
from src.video_util import frame_to_video
OPEN_EBSYNTH_LOG = False
MAX_PROCESS = 8
os_str = platform.system()
if os_str == 'Windows':
ebsynth_bin = '.\\src\\ebsynth\\deps\\ebsynth\\bin\\ebsynth.exe'
elif os_str == 'Linux':
ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth'
elif os_str == 'Darwin':
ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth.app'
else:
print('Cannot recognize OS. Run Ebsynth failed.')
exit(0)
@njit
def g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2):
for i in range(H):
for j in range(W):
if weight1 * dist1[i, j] < weight2 * dist2[i, j]:
output[i, j] = 0
else:
output[i, j] = 1
if weight1 == 0:
output[i, j] = 0
elif weight2 == 0:
output[i, j] = 1
def g_error_mask(dist1, dist2, weight1=1, weight2=1):
H, W = dist1.shape
output = np.empty_like(dist1, dtype=np.byte)
g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2)
return output
def create_sequence(base_dir, key_ind, key_dir):
sequence = VideoSequence(base_dir, key_ind, 'video', key_dir,
'tmp', '%04d.png', '%04d.png')
return sequence
def process_one_sequence(i, video_sequence: VideoSequence):
interval = video_sequence.interval(i)
for is_forward in [True, False]:
input_seq = video_sequence.get_input_sequence(i, is_forward)
output_seq = video_sequence.get_output_sequence(i, is_forward)
flow_seq = video_sequence.get_flow_sequence(i, is_forward)
key_img_id = i if is_forward else i + 1
key_img = video_sequence.get_key_img(key_img_id)
for j in range(interval - 1):
i1 = cv2.imread(input_seq[j])
i2 = cv2.imread(input_seq[j + 1])
flow_calc.get_flow(i1, i2, flow_seq[j])
guides: List[BaseGuide] = [
ColorGuide(input_seq),
EdgeGuide(input_seq,
video_sequence.get_edge_sequence(i, is_forward)),
TemporalGuide(key_img, output_seq, flow_seq,
video_sequence.get_temporal_sequence(i, is_forward)),
PositionalGuide(flow_seq,
video_sequence.get_pos_sequence(i, is_forward))
]
weights = [6, 0.5, 0.5, 2]
for j in range(interval):
# key frame
if j == 0:
img = cv2.imread(key_img)
cv2.imwrite(output_seq[0], img)
else:
cmd = f'{ebsynth_bin} -style {os.path.abspath(key_img)}'
for g, w in zip(guides, weights):
cmd += ' ' + g.get_cmd(j, w)
cmd += (f' -output {os.path.abspath(output_seq[j])}'
' -searchvoteiters 12 -patchmatchiters 6')
if OPEN_EBSYNTH_LOG:
print(cmd)
subprocess.run(cmd,
shell=True,
capture_output=not OPEN_EBSYNTH_LOG)
def process_sequences(i_arr, video_sequence: VideoSequence):
for i in i_arr:
process_one_sequence(i, video_sequence)
def run_ebsynth(video_sequence: VideoSequence):
beg = time.time()
processes = []
mp.set_start_method('spawn')
n_process = min(MAX_PROCESS, video_sequence.n_seq)
cnt = video_sequence.n_seq // n_process
remainder = video_sequence.n_seq % n_process
prev_idx = 0
for i in range(n_process):
task_cnt = cnt + 1 if i < remainder else cnt
i_arr = list(range(prev_idx, prev_idx + task_cnt))
prev_idx += task_cnt
p = mp.Process(target=process_sequences, args=(i_arr, video_sequence))
p.start()
processes.append(p)
for p in processes:
p.join()
end = time.time()
print(f'ebsynth: {end-beg}')
@njit
def assemble_min_error_img_loop(H, W, a, b, error_mask, out):
for i in range(H):
for j in range(W):
if error_mask[i, j] == 0:
out[i, j] = a[i, j]
else:
out[i, j] = b[i, j]
def assemble_min_error_img(a, b, error_mask):
H, W = a.shape[0:2]
out = np.empty_like(a)
assemble_min_error_img_loop(H, W, a, b, error_mask, out)
return out
def load_error(bin_path, img_shape):
img_size = img_shape[0] * img_shape[1]
with open(bin_path, 'rb') as fp:
bytes = fp.read()
read_size = struct.unpack('q', bytes[:8])
assert read_size[0] == img_size
float_res = struct.unpack('f' * img_size, bytes[8:])
res = np.array(float_res,
dtype=np.float32).reshape(img_shape[0], img_shape[1])
return res
def process_seq(video_sequence: VideoSequence,
i,
blend_histogram=True,
blend_gradient=True):
key1_img = cv2.imread(video_sequence.get_key_img(i))
img_shape = key1_img.shape
interval = video_sequence.interval(i)
beg_id = video_sequence.get_sequence_beg_id(i)
oas = video_sequence.get_output_sequence(i)
obs = video_sequence.get_output_sequence(i, False)
binas = [x.replace('jpg', 'bin') for x in oas]
binbs = [x.replace('jpg', 'bin') for x in obs]
obs = [obs[0]] + list(reversed(obs[1:]))
inputs = video_sequence.get_input_sequence(i)
oas = [cv2.imread(x) for x in oas]
obs = [cv2.imread(x) for x in obs]
inputs = [cv2.imread(x) for x in inputs]
flow_seq = video_sequence.get_flow_sequence(i)
dist1s = []
dist2s = []
for i in range(interval - 1):
bin_a = binas[i + 1]
bin_b = binbs[i + 1]
dist1s.append(load_error(bin_a, img_shape))
dist2s.append(load_error(bin_b, img_shape))
lb = 0
ub = 1
beg = time.time()
p_mask = None
# write key img
blend_out_path = video_sequence.get_blending_img(beg_id)
cv2.imwrite(blend_out_path, key1_img)
for i in range(interval - 1):
c_id = beg_id + i + 1
blend_out_path = video_sequence.get_blending_img(c_id)
dist1 = dist1s[i]
dist2 = dist2s[i]
oa = oas[i + 1]
ob = obs[i + 1]
weight1 = i / (interval - 1) * (ub - lb) + lb
weight2 = 1 - weight1
mask = g_error_mask(dist1, dist2, weight1, weight2)
if p_mask is not None:
flow_path = flow_seq[i]
flow = flow_calc.get_flow(inputs[i], inputs[i + 1], flow_path)
p_mask = flow_calc.warp(p_mask, flow, 'nearest')
mask = p_mask | mask
p_mask = mask
# Save tmp mask
# out_mask = np.expand_dims(mask, 2)
# cv2.imwrite(f'mask/mask_{c_id:04d}.jpg', out_mask * 255)
min_error_img = assemble_min_error_img(oa, ob, mask)
if blend_histogram:
hb_res = histogram_blend.blend(oa, ob, min_error_img,
(1 - weight1), (1 - weight2))
else:
# hb_res = min_error_img
tmpa = oa.astype(np.float32)
tmpb = ob.astype(np.float32)
hb_res = (1 - weight1) * tmpa + (1 - weight2) * tmpb
# cv2.imwrite(blend_out_path, hb_res)
# gradient blend
if blend_gradient:
res = poisson_fusion(hb_res, oa, ob, mask)
else:
res = hb_res
cv2.imwrite(blend_out_path, res)
end = time.time()
print('others:', end - beg)
def main(args):
global MAX_PROCESS
MAX_PROCESS = args.n_proc
video_sequence = create_sequence(f'{args.name}', args.key_ind, args.key)
if not args.ne:
run_ebsynth(video_sequence)
blend_histogram = True
blend_gradient = args.ps
for i in range(video_sequence.n_seq):
process_seq(video_sequence, i, blend_histogram, blend_gradient)
if args.output:
frame_to_video(args.output, video_sequence.blending_dir, args.fps,
False)
if not args.tmp:
video_sequence.remove_out_and_tmp()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('name', type=str, help='Path to input video')
parser.add_argument('--output',
type=str,
default=None,
help='Path to output video')
parser.add_argument('--fps',
type=float,
default=30,
help='The FPS of output video')
parser.add_argument("--key_ind", type=int, nargs='+', default=[1], help="key frame index")
parser.add_argument('--key',
type=str,
default='keys0',
help='The subfolder name of stylized key frames')
parser.add_argument('--n_proc',
type=int,
default=8,
help='The max process count')
parser.add_argument('-ps',
action='store_true',
help='Use poisson gradient blending')
parser.add_argument(
'-ne',
action='store_true',
help='Do not run ebsynth (use previous ebsynth output)')
parser.add_argument('-tmp',
action='store_true',
help='Keep temporary output')
args = parser.parse_args()
main(args)