import torch from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration, BlipProcessor, BlipForConditionalGeneration class ImageCaptioner: def __init__(self, model_name="blip2-opt", device="cpu"): self.model_name = model_name self.device = device self.processor, self.model = self.initialize_model() def initialize_model(self): if self.device == 'cpu': self.data_type = torch.float32 else: self.data_type = torch.float16 processor, model = None, None if self.model_name == "blip2-opt": processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b-coco") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b-coco", torch_dtype=self.data_type, low_cpu_mem_usage=True) elif self.model_name == "blip2-flan-t5": processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-flan-t5-xl", torch_dtype=self.data_type, low_cpu_mem_usage=True) # for gpu with small memory elif self.model_name == "blip": processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") else: raise NotImplementedError(f"{self.model_name} not implemented.") model.to(self.device) if self.device != 'cpu': model.half() return processor, model def image_caption(self, image): inputs = self.processor(images=image, return_tensors="pt").to(self.device, self.data_type) generated_ids = self.model.generate(**inputs) generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return generated_text def image_caption_debug(self, image_src): return "A dish with salmon, broccoli, and something yellow."