Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
from efficientnet_pytorch import EfficientNet | |
from pytorch_grad_cam import GradCAMElementWise | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
class Detector(nn.Module): | |
def __init__(self): | |
super(Detector, self).__init__() | |
self.net=EfficientNet.from_pretrained("efficientnet-b4",advprop=True,num_classes=2) | |
def forward(self,x): | |
x=self.net(x) | |
return x | |
def create_model(path="Weights/94_0.9485_val.tar", device=torch.device('cpu')): | |
model=Detector() | |
model=model.to(device) | |
if device == torch.device('cpu'): | |
cnn_sd=torch.load(path, map_location=torch.device('cpu') )["model"] | |
else: | |
cnn_sd=torch.load(path)["model"] | |
model.load_state_dict(cnn_sd) | |
model.eval() | |
return model | |
def create_cam(model): | |
target_layers = [model.net._blocks[-1]] | |
targets = [ClassifierOutputTarget(1)] | |
cam_algorithm = GradCAMElementWise | |
cam = cam_algorithm(model=model,target_layers=target_layers,use_cuda=False) | |
return cam |