File size: 14,587 Bytes
2efe949
 
 
 
 
 
 
 
 
 
 
 
6f31b98
 
23686dc
 
2efe949
35fd487
 
664d48c
 
2efe949
6f31b98
35fd487
2efe949
6f31b98
2efe949
6f31b98
2efe949
664d48c
 
 
d4d8547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efe949
d4d8547
 
 
 
 
2efe949
d4d8547
 
 
6f31b98
2efe949
6f31b98
 
 
d4d8547
 
6f31b98
d4d8547
 
 
 
 
 
 
 
 
 
664d48c
d4d8547
 
 
 
 
 
 
 
 
 
 
 
 
6f31b98
2efe949
664d48c
2efe949
 
 
6f31b98
2efe949
 
 
 
8793261
 
6f31b98
2efe949
6f31b98
8793261
 
6f31b98
664d48c
6f31b98
 
 
 
 
 
2efe949
 
 
 
 
 
 
 
6f31b98
 
2efe949
6f31b98
8793261
6f31b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efe949
6f31b98
 
 
 
 
2efe949
 
 
 
8793261
 
6f31b98
8793261
6f31b98
2efe949
6f31b98
 
 
 
 
 
 
 
 
 
 
 
2efe949
35fd487
6f31b98
 
 
 
 
d4d8547
 
 
 
 
 
 
6f31b98
 
 
d4d8547
6f31b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2efe949
6f31b98
2efe949
 
 
 
8793261
 
 
 
 
2efe949
 
 
b39deb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4d8547
b39deb8
 
 
 
c09715b
b39deb8
2efe949
 
 
 
 
 
 
 
 
8793261
6f31b98
2efe949
 
6f31b98
2efe949
 
6f31b98
 
2efe949
 
 
 
 
 
8793261
2efe949
6f31b98
 
 
 
2efe949
35fd487
 
2efe949
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import spaces
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
from PIL import Image, ImageDraw
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2
import io
import uuid

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True)

@spaces.GPU
def run_example(task_prompt, image, text_input=None):
    prompt = task_prompt if text_input is None else task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
    with torch.inference_mode():
        generated_ids = model.generate(**inputs, max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3)
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    return processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.size[0], image.size[1]))

colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red',
            'lime', 'indigo', 'violet', 'aqua', 'magenta', 'coral', 'gold', 'tan', 'skyblue']

def fig_to_pil(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
    buf.seek(0)
    return Image.open(buf)

def plot_bbox_img(image, data):
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.imshow(image)
    if 'bboxes' in data and 'labels' in data:
        bboxes, labels = data['bboxes'], data['labels']
    elif 'bboxes' in data and 'bboxes_labels' in data:
        bboxes, labels = data['bboxes'], data['bboxes_labels']
    else:
        return fig_to_pil(fig)
    for bbox, label in zip(bboxes, labels):
        x1, y1, x2, y2 = bbox
        rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, edgecolor='indigo', facecolor='none')
        ax.add_patch(rect)
        plt.text(x1, y1, label, color='white', fontsize=10, bbox=dict(facecolor='indigo', alpha=0.8))
    ax.axis('off')
    return fig_to_pil(fig)

def draw_poly_img(image, prediction, fill_mask=False):
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.imshow(image)
    for polygons, label in zip(prediction.get('polygons', []), prediction.get('labels', [])):
        color = random.choice(colormap)
        for polygon in polygons:
            if isinstance(polygon[0], (int, float)):
                polygon = [(polygon[i], polygon[i+1]) for i in range(0, len(polygon), 2)]
            poly = patches.Polygon(polygon, edgecolor=color, facecolor=color if fill_mask else 'none', alpha=0.5 if fill_mask else 1, linewidth=2)
            ax.add_patch(poly)
        if polygon:
            plt.text(polygon[0][0], polygon[0][1], label, color='white', fontsize=10, bbox=dict(facecolor=color, alpha=0.8))
    ax.axis('off')
    return fig_to_pil(fig)

def draw_ocr_bboxes(image, prediction):
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.imshow(image)
    bboxes, labels = prediction['quad_boxes'], prediction['labels']
    for box, label in zip(bboxes, labels):
        color = random.choice(colormap)
        box_array = np.array(box).reshape(-1, 2)
        polygon = patches.Polygon(box_array, edgecolor=color, fill=False, linewidth=2)
        ax.add_patch(polygon)
        plt.text(box_array[0, 0], box_array[0, 1], label, color='white', fontsize=10, bbox=dict(facecolor=color, alpha=0.8))
    ax.axis('off')
    return fig_to_pil(fig)

def plot_bbox(image, data):
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)
    for bbox, label in zip(data['bboxes'], data['labels']):
        x1, y1, x2, y2 = bbox
        draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
        draw.text((x1, y1), label, fill="white")
    return np.array(img_draw)

@spaces.GPU
def process_video(input_video_path, task_prompt):
    cap = cv2.VideoCapture(input_video_path)
    if not cap.isOpened():
        return None, []

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    result_file_name = f"{uuid.uuid4()}.mp4"
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(result_file_name, fourcc, fps, (frame_width, frame_height))

    processed_frames = 0
    frame_results = []
    color_map = {}

    def get_color(label):
        if label not in color_map:
            color_map[label] = random.choice(colormap)
        return color_map[label]

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        pil_image = Image.fromarray(frame_rgb)

        try:
            result = run_example(task_prompt, pil_image)

            if task_prompt == "<OD>":
                processed_image = plot_bbox(pil_image, result['<OD>'])
                frame_results.append((processed_frames + 1, result['<OD>']))
            elif task_prompt == "<DENSE_REGION_CAPTION>":
                processed_image = pil_image.copy()
                draw = ImageDraw.Draw(processed_image)
                for i, label in enumerate(result['<DENSE_REGION_CAPTION>'].get('labels', [])):
                    draw.text((10, 10 + i*20), label, fill="white")
                processed_image = np.array(processed_image)
                frame_results.append((processed_frames + 1, result['<DENSE_REGION_CAPTION>']))
            elif task_prompt in ["<REFERRING_EXPRESSION_SEGMENTATION>", "<REGION_TO_SEGMENTATION>"]:
                if isinstance(result[task_prompt], dict) and 'polygons' in result[task_prompt]:
                    processed_image = draw_vid_polygons(pil_image, result[task_prompt], get_color)
                else:
                    processed_image = np.array(pil_image)
                frame_results.append((processed_frames + 1, result[task_prompt]))
            else:
                processed_image = np.array(pil_image)

            out.write(cv2.cvtColor(processed_image, cv2.COLOR_RGB2BGR))
            processed_frames += 1

        except Exception as e:
            print(f"Error processing frame {processed_frames + 1}: {str(e)}")
            processed_image = np.array(pil_image)
            out.write(cv2.cvtColor(processed_image, cv2.COLOR_RGB2BGR))
            processed_frames += 1

    cap.release()
    out.release()
    cv2.destroyAllWindows()

    if processed_frames == 0:
        return None, frame_results

    return result_file_name, frame_results

def draw_vid_polygons(image, prediction, get_color):
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)
    for polygons, label in zip(prediction.get('polygons', []), prediction.get('labels', [])):
        color = get_color(label)
        for polygon in polygons:
            if isinstance(polygon[0], (int, float)): 
                polygon = [(polygon[i], polygon[i+1]) for i in range(0, len(polygon), 2)]
            draw.polygon(polygon, outline=color, fill=color)
        if polygon:
            draw.text(polygon[0], label, fill="white")
    return np.array(img_draw)

@spaces.GPU
def process_image(image, task, text):
    task_mapping = {
        "Caption": ("<CAPTION>", lambda result: (result['<CAPTION>'], image)),
        "Detailed Caption": ("<DETAILED_CAPTION>", lambda result: (result['<DETAILED_CAPTION>'], image)),
        "More Detailed Caption": ("<MORE_DETAILED_CAPTION>", lambda result: (result['<MORE_DETAILED_CAPTION>'], image)),
        "Caption to Phrase Grounding": ("<CAPTION_TO_PHRASE_GROUNDING>", lambda result: (str(result['<CAPTION_TO_PHRASE_GROUNDING>']), plot_bbox_img(image, result['<CAPTION_TO_PHRASE_GROUNDING>']))),
        "Object Detection": ("<OD>", lambda result: (str(result['<OD>']), plot_bbox_img(image, result['<OD>']))),
        "Dense Region Caption": ("<DENSE_REGION_CAPTION>", lambda result: (str(result['<DENSE_REGION_CAPTION>']), plot_bbox_img(image, result['<DENSE_REGION_CAPTION>']))),
        "Region Proposal": ("<REGION_PROPOSAL>", lambda result: (str(result['<REGION_PROPOSAL>']), plot_bbox_img(image, result['<REGION_PROPOSAL>']))),
        "Referring Expression Segmentation": ("<REFERRING_EXPRESSION_SEGMENTATION>", lambda result: (str(result['<REFERRING_EXPRESSION_SEGMENTATION>']), draw_poly_img(image, result['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True))),
        "Region to Segmentation": ("<REGION_TO_SEGMENTATION>", lambda result: (str(result['<REGION_TO_SEGMENTATION>']), draw_poly_img(image, result['<REGION_TO_SEGMENTATION>'], fill_mask=True))),
        "Open Vocabulary Detection": ("<OPEN_VOCABULARY_DETECTION>", lambda result: (str(result['<OPEN_VOCABULARY_DETECTION>']), plot_bbox_img(image, result['<OPEN_VOCABULARY_DETECTION>']))),
        "Region to Category": ("<REGION_TO_CATEGORY>", lambda result: (result['<REGION_TO_CATEGORY>'], image)),
        "Region to Description": ("<REGION_TO_DESCRIPTION>", lambda result: (result['<REGION_TO_DESCRIPTION>'], image)),
        "OCR": ("<OCR>", lambda result: (result['<OCR>'], image)),
        "OCR with Region": ("<OCR_WITH_REGION>", lambda result: (str(result['<OCR_WITH_REGION>']), draw_ocr_bboxes(image, result['<OCR_WITH_REGION>']))),
    }

    if task in task_mapping:
        prompt, process_func = task_mapping[task]
        result = run_example(prompt, image, text)
        return process_func(result)
    else:
        return "", image

def map_task_to_prompt(task):
    task_mapping = {
        "Object Detection": "<OD>",
        "Dense Region Caption": "<DENSE_REGION_CAPTION>",
        "Referring Expression Segmentation": "<REFERRING_EXPRESSION_SEGMENTATION>",
        "Region to Segmentation": "<REGION_TO_SEGMENTATION>"
    }
    return task_mapping.get(task, "")

def process_video_p(input_video, task, text_input):
    prompt = map_task_to_prompt(task)
    if task == "Referring Expression Segmentation" and text_input:
        prompt += text_input
    result, frame_results = process_video(input_video, prompt)
    if result is None:
        return None, "Error: Video processing failed. Check logs above for info.", str(frame_results)
    return result, result, str(frame_results)

with gr.Blocks() as demo:
    gr.HTML("<h1><center>Microsoft Florence-2-large-ft</center></h1>")
    
    with gr.Tab(label="Image"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture", type="pil")
                task_dropdown = gr.Dropdown(
                    choices=["Caption", "Detailed Caption", "More Detailed Caption", "Caption to Phrase Grounding",
                             "Object Detection", "Dense Region Caption", "Region Proposal", "Referring Expression Segmentation",
                             "Region to Segmentation", "Open Vocabulary Detection", "Region to Category", "Region to Description",
                             "OCR", "OCR with Region"],
                    label="Task", value="Caption"
                )
                text_input = gr.Textbox(label="Text Input (is Optional)", visible=False)
                gr.Examples(
                    examples=[
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
                            "Detailed Caption",
                            "",
                        ],
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
                            "Object Detection",
                            "",
                        ],
                        [
                            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
                            "Caption to Phrase Grounding",
                            "A green car parked in front of a yellow building."
                        ],
                        [
                            "http://ecx.images-amazon.com/images/I/51UUzBDAMsL.jpg?download=true",
                            "OCR",
                            ""
                        ]
                    ],
                    inputs=[input_img, task_dropdown, text_input],
                )
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Results")
                output_image = gr.Image(label="Image", type="pil")

    with gr.Tab(label="Video"):
        with gr.Row():
            with gr.Column():
                input_video = gr.Video(label="Video")
                video_task_dropdown = gr.Dropdown(
                    choices=["Object Detection", "Dense Region Caption", "Referring Expression Segmentation", "Region to Segmentation"],
                    label="Video Task", value="Object Detection"
                )
                video_text_input = gr.Textbox(label="Text Input (for Referring Expression Segmentation)", visible=False)
                video_submit_btn = gr.Button(value="Process Video")
            with gr.Column():
                output_video = gr.Video(label="Processed Video")
                frame_results_output = gr.Textbox(label="Frame Results")

    def update_text_input(task):
        return gr.update(visible=task in ["Caption to Phrase Grounding", "Referring Expression Segmentation",
                                           "Region to Segmentation", "Open Vocabulary Detection", "Region to Category",
                                           "Region to Description"])

    task_dropdown.change(fn=update_text_input, inputs=task_dropdown, outputs=text_input)

    def update_video_text_input(task):
        return gr.update(visible=task == "Referring Expression Segmentation")

    video_task_dropdown.change(fn=update_video_text_input, inputs=video_task_dropdown, outputs=video_text_input)

    submit_btn.click(fn=process_image, inputs=[input_img, task_dropdown, text_input], outputs=[output_text, output_image])
    video_submit_btn.click(fn=process_video_p, inputs=[input_video, video_task_dropdown, video_text_input], outputs=[output_video, output_video, frame_results_output])

demo.launch()