Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,587 Bytes
2efe949 6f31b98 23686dc 2efe949 35fd487 664d48c 2efe949 6f31b98 35fd487 2efe949 6f31b98 2efe949 6f31b98 2efe949 664d48c d4d8547 2efe949 d4d8547 2efe949 d4d8547 6f31b98 2efe949 6f31b98 d4d8547 6f31b98 d4d8547 664d48c d4d8547 6f31b98 2efe949 664d48c 2efe949 6f31b98 2efe949 8793261 6f31b98 2efe949 6f31b98 8793261 6f31b98 664d48c 6f31b98 2efe949 6f31b98 2efe949 6f31b98 8793261 6f31b98 2efe949 6f31b98 2efe949 8793261 6f31b98 8793261 6f31b98 2efe949 6f31b98 2efe949 35fd487 6f31b98 d4d8547 6f31b98 d4d8547 6f31b98 2efe949 6f31b98 2efe949 8793261 2efe949 b39deb8 d4d8547 b39deb8 c09715b b39deb8 2efe949 8793261 6f31b98 2efe949 6f31b98 2efe949 6f31b98 2efe949 8793261 2efe949 6f31b98 2efe949 35fd487 2efe949 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import spaces
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
from PIL import Image, ImageDraw
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import cv2
import io
import uuid
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True)
@spaces.GPU
def run_example(task_prompt, image, text_input=None):
prompt = task_prompt if text_input is None else task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
with torch.inference_mode():
generated_ids = model.generate(**inputs, max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
return processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.size[0], image.size[1]))
colormap = ['blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan', 'red',
'lime', 'indigo', 'violet', 'aqua', 'magenta', 'coral', 'gold', 'tan', 'skyblue']
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=300, bbox_inches='tight')
buf.seek(0)
return Image.open(buf)
def plot_bbox_img(image, data):
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(image)
if 'bboxes' in data and 'labels' in data:
bboxes, labels = data['bboxes'], data['labels']
elif 'bboxes' in data and 'bboxes_labels' in data:
bboxes, labels = data['bboxes'], data['bboxes_labels']
else:
return fig_to_pil(fig)
for bbox, label in zip(bboxes, labels):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, edgecolor='indigo', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=10, bbox=dict(facecolor='indigo', alpha=0.8))
ax.axis('off')
return fig_to_pil(fig)
def draw_poly_img(image, prediction, fill_mask=False):
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(image)
for polygons, label in zip(prediction.get('polygons', []), prediction.get('labels', [])):
color = random.choice(colormap)
for polygon in polygons:
if isinstance(polygon[0], (int, float)):
polygon = [(polygon[i], polygon[i+1]) for i in range(0, len(polygon), 2)]
poly = patches.Polygon(polygon, edgecolor=color, facecolor=color if fill_mask else 'none', alpha=0.5 if fill_mask else 1, linewidth=2)
ax.add_patch(poly)
if polygon:
plt.text(polygon[0][0], polygon[0][1], label, color='white', fontsize=10, bbox=dict(facecolor=color, alpha=0.8))
ax.axis('off')
return fig_to_pil(fig)
def draw_ocr_bboxes(image, prediction):
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
box_array = np.array(box).reshape(-1, 2)
polygon = patches.Polygon(box_array, edgecolor=color, fill=False, linewidth=2)
ax.add_patch(polygon)
plt.text(box_array[0, 0], box_array[0, 1], label, color='white', fontsize=10, bbox=dict(facecolor=color, alpha=0.8))
ax.axis('off')
return fig_to_pil(fig)
def plot_bbox(image, data):
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
draw.text((x1, y1), label, fill="white")
return np.array(img_draw)
@spaces.GPU
def process_video(input_video_path, task_prompt):
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
return None, []
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
result_file_name = f"{uuid.uuid4()}.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(result_file_name, fourcc, fps, (frame_width, frame_height))
processed_frames = 0
frame_results = []
color_map = {}
def get_color(label):
if label not in color_map:
color_map[label] = random.choice(colormap)
return color_map[label]
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
try:
result = run_example(task_prompt, pil_image)
if task_prompt == "<OD>":
processed_image = plot_bbox(pil_image, result['<OD>'])
frame_results.append((processed_frames + 1, result['<OD>']))
elif task_prompt == "<DENSE_REGION_CAPTION>":
processed_image = pil_image.copy()
draw = ImageDraw.Draw(processed_image)
for i, label in enumerate(result['<DENSE_REGION_CAPTION>'].get('labels', [])):
draw.text((10, 10 + i*20), label, fill="white")
processed_image = np.array(processed_image)
frame_results.append((processed_frames + 1, result['<DENSE_REGION_CAPTION>']))
elif task_prompt in ["<REFERRING_EXPRESSION_SEGMENTATION>", "<REGION_TO_SEGMENTATION>"]:
if isinstance(result[task_prompt], dict) and 'polygons' in result[task_prompt]:
processed_image = draw_vid_polygons(pil_image, result[task_prompt], get_color)
else:
processed_image = np.array(pil_image)
frame_results.append((processed_frames + 1, result[task_prompt]))
else:
processed_image = np.array(pil_image)
out.write(cv2.cvtColor(processed_image, cv2.COLOR_RGB2BGR))
processed_frames += 1
except Exception as e:
print(f"Error processing frame {processed_frames + 1}: {str(e)}")
processed_image = np.array(pil_image)
out.write(cv2.cvtColor(processed_image, cv2.COLOR_RGB2BGR))
processed_frames += 1
cap.release()
out.release()
cv2.destroyAllWindows()
if processed_frames == 0:
return None, frame_results
return result_file_name, frame_results
def draw_vid_polygons(image, prediction, get_color):
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
for polygons, label in zip(prediction.get('polygons', []), prediction.get('labels', [])):
color = get_color(label)
for polygon in polygons:
if isinstance(polygon[0], (int, float)):
polygon = [(polygon[i], polygon[i+1]) for i in range(0, len(polygon), 2)]
draw.polygon(polygon, outline=color, fill=color)
if polygon:
draw.text(polygon[0], label, fill="white")
return np.array(img_draw)
@spaces.GPU
def process_image(image, task, text):
task_mapping = {
"Caption": ("<CAPTION>", lambda result: (result['<CAPTION>'], image)),
"Detailed Caption": ("<DETAILED_CAPTION>", lambda result: (result['<DETAILED_CAPTION>'], image)),
"More Detailed Caption": ("<MORE_DETAILED_CAPTION>", lambda result: (result['<MORE_DETAILED_CAPTION>'], image)),
"Caption to Phrase Grounding": ("<CAPTION_TO_PHRASE_GROUNDING>", lambda result: (str(result['<CAPTION_TO_PHRASE_GROUNDING>']), plot_bbox_img(image, result['<CAPTION_TO_PHRASE_GROUNDING>']))),
"Object Detection": ("<OD>", lambda result: (str(result['<OD>']), plot_bbox_img(image, result['<OD>']))),
"Dense Region Caption": ("<DENSE_REGION_CAPTION>", lambda result: (str(result['<DENSE_REGION_CAPTION>']), plot_bbox_img(image, result['<DENSE_REGION_CAPTION>']))),
"Region Proposal": ("<REGION_PROPOSAL>", lambda result: (str(result['<REGION_PROPOSAL>']), plot_bbox_img(image, result['<REGION_PROPOSAL>']))),
"Referring Expression Segmentation": ("<REFERRING_EXPRESSION_SEGMENTATION>", lambda result: (str(result['<REFERRING_EXPRESSION_SEGMENTATION>']), draw_poly_img(image, result['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True))),
"Region to Segmentation": ("<REGION_TO_SEGMENTATION>", lambda result: (str(result['<REGION_TO_SEGMENTATION>']), draw_poly_img(image, result['<REGION_TO_SEGMENTATION>'], fill_mask=True))),
"Open Vocabulary Detection": ("<OPEN_VOCABULARY_DETECTION>", lambda result: (str(result['<OPEN_VOCABULARY_DETECTION>']), plot_bbox_img(image, result['<OPEN_VOCABULARY_DETECTION>']))),
"Region to Category": ("<REGION_TO_CATEGORY>", lambda result: (result['<REGION_TO_CATEGORY>'], image)),
"Region to Description": ("<REGION_TO_DESCRIPTION>", lambda result: (result['<REGION_TO_DESCRIPTION>'], image)),
"OCR": ("<OCR>", lambda result: (result['<OCR>'], image)),
"OCR with Region": ("<OCR_WITH_REGION>", lambda result: (str(result['<OCR_WITH_REGION>']), draw_ocr_bboxes(image, result['<OCR_WITH_REGION>']))),
}
if task in task_mapping:
prompt, process_func = task_mapping[task]
result = run_example(prompt, image, text)
return process_func(result)
else:
return "", image
def map_task_to_prompt(task):
task_mapping = {
"Object Detection": "<OD>",
"Dense Region Caption": "<DENSE_REGION_CAPTION>",
"Referring Expression Segmentation": "<REFERRING_EXPRESSION_SEGMENTATION>",
"Region to Segmentation": "<REGION_TO_SEGMENTATION>"
}
return task_mapping.get(task, "")
def process_video_p(input_video, task, text_input):
prompt = map_task_to_prompt(task)
if task == "Referring Expression Segmentation" and text_input:
prompt += text_input
result, frame_results = process_video(input_video, prompt)
if result is None:
return None, "Error: Video processing failed. Check logs above for info.", str(frame_results)
return result, result, str(frame_results)
with gr.Blocks() as demo:
gr.HTML("<h1><center>Microsoft Florence-2-large-ft</center></h1>")
with gr.Tab(label="Image"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture", type="pil")
task_dropdown = gr.Dropdown(
choices=["Caption", "Detailed Caption", "More Detailed Caption", "Caption to Phrase Grounding",
"Object Detection", "Dense Region Caption", "Region Proposal", "Referring Expression Segmentation",
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category", "Region to Description",
"OCR", "OCR with Region"],
label="Task", value="Caption"
)
text_input = gr.Textbox(label="Text Input (is Optional)", visible=False)
gr.Examples(
examples=[
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
"Detailed Caption",
"",
],
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
"Object Detection",
"",
],
[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
"Caption to Phrase Grounding",
"A green car parked in front of a yellow building."
],
[
"http://ecx.images-amazon.com/images/I/51UUzBDAMsL.jpg?download=true",
"OCR",
""
]
],
inputs=[input_img, task_dropdown, text_input],
)
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Results")
output_image = gr.Image(label="Image", type="pil")
with gr.Tab(label="Video"):
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Video")
video_task_dropdown = gr.Dropdown(
choices=["Object Detection", "Dense Region Caption", "Referring Expression Segmentation", "Region to Segmentation"],
label="Video Task", value="Object Detection"
)
video_text_input = gr.Textbox(label="Text Input (for Referring Expression Segmentation)", visible=False)
video_submit_btn = gr.Button(value="Process Video")
with gr.Column():
output_video = gr.Video(label="Processed Video")
frame_results_output = gr.Textbox(label="Frame Results")
def update_text_input(task):
return gr.update(visible=task in ["Caption to Phrase Grounding", "Referring Expression Segmentation",
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category",
"Region to Description"])
task_dropdown.change(fn=update_text_input, inputs=task_dropdown, outputs=text_input)
def update_video_text_input(task):
return gr.update(visible=task == "Referring Expression Segmentation")
video_task_dropdown.change(fn=update_video_text_input, inputs=video_task_dropdown, outputs=video_text_input)
submit_btn.click(fn=process_image, inputs=[input_img, task_dropdown, text_input], outputs=[output_text, output_image])
video_submit_btn.click(fn=process_video_p, inputs=[input_video, video_task_dropdown, video_text_input], outputs=[output_video, output_video, frame_results_output])
demo.launch() |