debug
Browse files
app.py
CHANGED
@@ -4,11 +4,9 @@ import gradio as gr
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from transformers import CLIPProcessor, CLIPModel
|
7 |
-
from PIL import Image
|
8 |
|
9 |
IMAGENET_CLASSES_FILE = "imagenet-classes.txt"
|
10 |
EXAMPLES = ["dog.jpeg", "car.png"]
|
11 |
-
RESIZED_IMAGE_SIZE = 640
|
12 |
|
13 |
MARKDOWN = """
|
14 |
# Zero-Shot Image Classification with MetaCLIP
|
@@ -26,18 +24,6 @@ def load_text_lines(file_path: str) -> List[str]:
|
|
26 |
return [line.rstrip() for line in lines]
|
27 |
|
28 |
|
29 |
-
def resize_image(input_image):
|
30 |
-
aspect_ratio = input_image.width / input_image.height
|
31 |
-
if input_image.width > input_image.height:
|
32 |
-
new_width = RESIZED_IMAGE_SIZE
|
33 |
-
new_height = int(RESIZED_IMAGE_SIZE / aspect_ratio)
|
34 |
-
else:
|
35 |
-
new_height = RESIZED_IMAGE_SIZE
|
36 |
-
new_width = int(RESIZED_IMAGE_SIZE * aspect_ratio)
|
37 |
-
|
38 |
-
return input_image.resize((new_width, new_height), Image.LANCZOS)
|
39 |
-
|
40 |
-
|
41 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
model = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(device)
|
43 |
processor = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")
|
@@ -47,7 +33,7 @@ imagenet_classes = load_text_lines(IMAGENET_CLASSES_FILE)
|
|
47 |
def classify_image(input_image) -> str:
|
48 |
inputs = processor(
|
49 |
text=imagenet_classes,
|
50 |
-
images=
|
51 |
return_tensors="pt",
|
52 |
padding=True).to(device)
|
53 |
outputs = model(**inputs)
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from transformers import CLIPProcessor, CLIPModel
|
|
|
7 |
|
8 |
IMAGENET_CLASSES_FILE = "imagenet-classes.txt"
|
9 |
EXAMPLES = ["dog.jpeg", "car.png"]
|
|
|
10 |
|
11 |
MARKDOWN = """
|
12 |
# Zero-Shot Image Classification with MetaCLIP
|
|
|
24 |
return [line.rstrip() for line in lines]
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
model = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(device)
|
29 |
processor = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")
|
|
|
33 |
def classify_image(input_image) -> str:
|
34 |
inputs = processor(
|
35 |
text=imagenet_classes,
|
36 |
+
images=input_image,
|
37 |
return_tensors="pt",
|
38 |
padding=True).to(device)
|
39 |
outputs = model(**inputs)
|