File size: 5,092 Bytes
23cb925
 
3bd34d6
 
 
 
 
23cb925
 
 
 
 
 
 
 
df57751
f89aac1
 
 
 
df57751
f89aac1
3bd34d6
 
 
 
 
23cb925
 
f89aac1
23cb925
 
f89aac1
 
 
 
3bd34d6
 
23cb925
3bd34d6
 
 
 
 
23cb925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd34d6
23cb925
f89aac1
 
 
 
 
3bd34d6
f89aac1
3bd34d6
 
 
 
23cb925
 
 
f89aac1
 
23cb925
 
 
 
 
 
 
 
 
 
 
f89aac1
23cb925
 
 
 
 
f89aac1
 
 
 
 
23cb925
 
 
 
f89aac1
23cb925
 
 
f89aac1
 
23cb925
f89aac1
df57751
f89aac1
 
 
 
 
 
 
 
df57751
23cb925
 
3bd34d6
23cb925
3bd34d6
23cb925
f89aac1
 
 
 
 
 
df57751
 
 
 
 
 
f89aac1
df57751
 
 
 
3bd34d6
23cb925
 
f89aac1
df57751
3bd34d6
df57751
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from typing import List

import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from transformers import pipeline, CLIPProcessor, CLIPModel

MARKDOWN = """
# Segment Anything Model + MetaCLIP
This is the demo for a Open Vocabulary Image Segmentation using 
[Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
"""
EXAMPLES = [
    ["https://media.roboflow.com/notebooks/examples/dog.jpeg", "dog", 0.5],
    ["https://media.roboflow.com/notebooks/examples/dog.jpeg", "building", 0.5],
    ["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "jacket", 0.5],
    ["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "coffee", 0.6],
]
MIN_AREA_THRESHOLD = 0.01
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SAM_GENERATOR = pipeline(
    task="mask-generation",
    model="facebook/sam-vit-large",
    device=DEVICE)
CLIP_MODEL = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(DEVICE)
CLIP_PROCESSOR = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")
SEMITRANSPARENT_MASK_ANNOTATOR = sv.MaskAnnotator(
    color=sv.Color.red(),
    color_lookup=sv.ColorLookup.INDEX)
SOLID_MASK_ANNOTATOR = sv.MaskAnnotator(
    color=sv.Color.red(),
    color_lookup=sv.ColorLookup.INDEX,
    opacity=1)


def run_sam(image_rgb_pil: Image.Image) -> sv.Detections:
    outputs = SAM_GENERATOR(image_rgb_pil, points_per_batch=32)
    mask = np.array(outputs['masks'])
    return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)


def run_clip(image_rgb_pil: Image.Image, text: List[str]) -> np.ndarray:
    inputs = CLIP_PROCESSOR(
        text=text,
        images=image_rgb_pil,
        return_tensors="pt",
        padding=True
    ).to(DEVICE)
    outputs = CLIP_MODEL(**inputs)
    probs = outputs.logits_per_image.softmax(dim=1)
    return probs.detach().cpu().numpy()


def reverse_mask_image(image: np.ndarray, mask: np.ndarray, gray_value=128):
    gray_color = np.array([gray_value, gray_value, gray_value], dtype=np.uint8)
    return np.where(mask[..., None], image, gray_color)


def annotate(
    image_rgb_pil: Image.Image,
    detections: sv.Detections,
    annotator: sv.MaskAnnotator
) -> Image.Image:
    img_bgr_numpy = np.array(image_rgb_pil)[:, :, ::-1]
    annotated_bgr_image = annotator.annotate(
        scene=img_bgr_numpy, detections=detections)
    return Image.fromarray(annotated_bgr_image[:, :, ::-1])


def filter_detections(
    image_rgb_pil: Image.Image,
    detections: sv.Detections,
    prompt: str,
    confidence: float
) -> sv.Detections:
    img_rgb_numpy = np.array(image_rgb_pil)
    text = [f"a picture of {prompt}", "a picture of background"]
    filtering_mask = []

    for xyxy, mask in zip(detections.xyxy, detections.mask):
        crop = sv.crop_image(image=img_rgb_numpy, xyxy=xyxy)
        mask_crop = sv.crop_image(image=mask, xyxy=xyxy)
        masked_crop = reverse_mask_image(image=crop, mask=mask_crop)
        masked_crop_pil = Image.fromarray(masked_crop)
        probs = run_clip(image_rgb_pil=masked_crop_pil, text=text)
        filtering_mask.append(probs[0][0] > confidence)

    filtering_mask = np.array(filtering_mask)
    return detections[filtering_mask]


def inference(
    image_rgb_pil: Image.Image,
    prompt: str,
    confidence: float
) -> List[Image.Image]:
    width, height = image_rgb_pil.size
    area = width * height

    detections = run_sam(image_rgb_pil)
    detections = detections[detections.area / area > MIN_AREA_THRESHOLD]
    detections = filter_detections(
        image_rgb_pil=image_rgb_pil,
        detections=detections,
        prompt=prompt,
        confidence=confidence)

    blank_image = Image.new("RGB", (width, height), "black")
    return [
        annotate(
            image_rgb_pil=image_rgb_pil,
            detections=detections,
            annotator=SEMITRANSPARENT_MASK_ANNOTATOR),
        annotate(
            image_rgb_pil=blank_image,
            detections=detections,
            annotator=SOLID_MASK_ANNOTATOR)
    ]


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                image_mode='RGB', type='pil', height=500)
            prompt_text = gr.Textbox(
                label="Prompt", value="dog")
            confidence_slider = gr.Slider(
                label="Confidence", minimum=0.5, maximum=1.0, step=0.05, value=0.6)
            submit_button = gr.Button("Submit")
        gallery = gr.Gallery(label="Result", object_fit="scale-down", preview=True)
    with gr.Row():
        gr.Examples(
            examples=EXAMPLES,
            fn=inference,
            inputs=[input_image, prompt_text, confidence_slider],
            outputs=[gallery],
            cache_examples=True,
            run_on_click=True
        )

    submit_button.click(
        inference,
        inputs=[input_image, prompt_text, confidence_slider],
        outputs=gallery)

demo.launch(debug=False, show_error=True)