Spaces:
Runtime error
Runtime error
File size: 5,092 Bytes
23cb925 3bd34d6 23cb925 df57751 f89aac1 df57751 f89aac1 3bd34d6 23cb925 f89aac1 23cb925 f89aac1 3bd34d6 23cb925 3bd34d6 23cb925 3bd34d6 23cb925 f89aac1 3bd34d6 f89aac1 3bd34d6 23cb925 f89aac1 23cb925 f89aac1 23cb925 f89aac1 23cb925 f89aac1 23cb925 f89aac1 23cb925 f89aac1 df57751 f89aac1 df57751 23cb925 3bd34d6 23cb925 3bd34d6 23cb925 f89aac1 df57751 f89aac1 df57751 3bd34d6 23cb925 f89aac1 df57751 3bd34d6 df57751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from typing import List
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from transformers import pipeline, CLIPProcessor, CLIPModel
MARKDOWN = """
# Segment Anything Model + MetaCLIP
This is the demo for a Open Vocabulary Image Segmentation using
[Segment Anything Model](https://github.com/facebookresearch/segment-anything) and
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP) combo.
"""
EXAMPLES = [
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "dog", 0.5],
["https://media.roboflow.com/notebooks/examples/dog.jpeg", "building", 0.5],
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "jacket", 0.5],
["https://media.roboflow.com/notebooks/examples/dog-3.jpeg", "coffee", 0.6],
]
MIN_AREA_THRESHOLD = 0.01
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SAM_GENERATOR = pipeline(
task="mask-generation",
model="facebook/sam-vit-large",
device=DEVICE)
CLIP_MODEL = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(DEVICE)
CLIP_PROCESSOR = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")
SEMITRANSPARENT_MASK_ANNOTATOR = sv.MaskAnnotator(
color=sv.Color.red(),
color_lookup=sv.ColorLookup.INDEX)
SOLID_MASK_ANNOTATOR = sv.MaskAnnotator(
color=sv.Color.red(),
color_lookup=sv.ColorLookup.INDEX,
opacity=1)
def run_sam(image_rgb_pil: Image.Image) -> sv.Detections:
outputs = SAM_GENERATOR(image_rgb_pil, points_per_batch=32)
mask = np.array(outputs['masks'])
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
def run_clip(image_rgb_pil: Image.Image, text: List[str]) -> np.ndarray:
inputs = CLIP_PROCESSOR(
text=text,
images=image_rgb_pil,
return_tensors="pt",
padding=True
).to(DEVICE)
outputs = CLIP_MODEL(**inputs)
probs = outputs.logits_per_image.softmax(dim=1)
return probs.detach().cpu().numpy()
def reverse_mask_image(image: np.ndarray, mask: np.ndarray, gray_value=128):
gray_color = np.array([gray_value, gray_value, gray_value], dtype=np.uint8)
return np.where(mask[..., None], image, gray_color)
def annotate(
image_rgb_pil: Image.Image,
detections: sv.Detections,
annotator: sv.MaskAnnotator
) -> Image.Image:
img_bgr_numpy = np.array(image_rgb_pil)[:, :, ::-1]
annotated_bgr_image = annotator.annotate(
scene=img_bgr_numpy, detections=detections)
return Image.fromarray(annotated_bgr_image[:, :, ::-1])
def filter_detections(
image_rgb_pil: Image.Image,
detections: sv.Detections,
prompt: str,
confidence: float
) -> sv.Detections:
img_rgb_numpy = np.array(image_rgb_pil)
text = [f"a picture of {prompt}", "a picture of background"]
filtering_mask = []
for xyxy, mask in zip(detections.xyxy, detections.mask):
crop = sv.crop_image(image=img_rgb_numpy, xyxy=xyxy)
mask_crop = sv.crop_image(image=mask, xyxy=xyxy)
masked_crop = reverse_mask_image(image=crop, mask=mask_crop)
masked_crop_pil = Image.fromarray(masked_crop)
probs = run_clip(image_rgb_pil=masked_crop_pil, text=text)
filtering_mask.append(probs[0][0] > confidence)
filtering_mask = np.array(filtering_mask)
return detections[filtering_mask]
def inference(
image_rgb_pil: Image.Image,
prompt: str,
confidence: float
) -> List[Image.Image]:
width, height = image_rgb_pil.size
area = width * height
detections = run_sam(image_rgb_pil)
detections = detections[detections.area / area > MIN_AREA_THRESHOLD]
detections = filter_detections(
image_rgb_pil=image_rgb_pil,
detections=detections,
prompt=prompt,
confidence=confidence)
blank_image = Image.new("RGB", (width, height), "black")
return [
annotate(
image_rgb_pil=image_rgb_pil,
detections=detections,
annotator=SEMITRANSPARENT_MASK_ANNOTATOR),
annotate(
image_rgb_pil=blank_image,
detections=detections,
annotator=SOLID_MASK_ANNOTATOR)
]
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image = gr.Image(
image_mode='RGB', type='pil', height=500)
prompt_text = gr.Textbox(
label="Prompt", value="dog")
confidence_slider = gr.Slider(
label="Confidence", minimum=0.5, maximum=1.0, step=0.05, value=0.6)
submit_button = gr.Button("Submit")
gallery = gr.Gallery(label="Result", object_fit="scale-down", preview=True)
with gr.Row():
gr.Examples(
examples=EXAMPLES,
fn=inference,
inputs=[input_image, prompt_text, confidence_slider],
outputs=[gallery],
cache_examples=True,
run_on_click=True
)
submit_button.click(
inference,
inputs=[input_image, prompt_text, confidence_slider],
outputs=gallery)
demo.launch(debug=False, show_error=True)
|