Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
initial commit
Browse files- .gitignore +2 -0
- README.md +1 -1
- app.py +177 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
.idea/
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: YOLO ARENA
|
3 |
-
emoji:
|
4 |
colorFrom: pink
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: YOLO ARENA
|
3 |
+
emoji: ๐๏ธ
|
4 |
colorFrom: pink
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import supervision as sv
|
6 |
+
from inference import get_model
|
7 |
+
|
8 |
+
MARKDOWN = """
|
9 |
+
# YOLO-ARENA ๐๏ธ
|
10 |
+
|
11 |
+
Powered by Roboflow [Inference](https://github.com/roboflow/inference) and
|
12 |
+
[Supervision](https://github.com/roboflow/supervision).
|
13 |
+
"""
|
14 |
+
|
15 |
+
IMAGE_EXAMPLES = [
|
16 |
+
['https://media.roboflow.com/dog.jpeg', 0.3]
|
17 |
+
]
|
18 |
+
|
19 |
+
YOLO_V8_MODEL = get_model(model_id="yolov8s-640")
|
20 |
+
YOLO_NAS_MODEL = get_model(model_id="coco/14")
|
21 |
+
YOLO_V9_MODEL = get_model(model_id="coco/17")
|
22 |
+
|
23 |
+
LABEL_ANNOTATORS = sv.LabelAnnotator(text_color=sv.Color.black())
|
24 |
+
BOUNDING_BOX_ANNOTATORS = sv.BoundingBoxAnnotator()
|
25 |
+
|
26 |
+
|
27 |
+
def process_image(
|
28 |
+
input_image: np.ndarray,
|
29 |
+
confidence_threshold: float,
|
30 |
+
iou_threshold: float
|
31 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
32 |
+
yolo_v8_result = YOLO_V8_MODEL.infer(
|
33 |
+
input_image,
|
34 |
+
confidence=confidence_threshold,
|
35 |
+
iou_threshold=iou_threshold
|
36 |
+
)[0]
|
37 |
+
yolo_v8_detections = sv.Detections.from_inference(yolo_v8_result)
|
38 |
+
|
39 |
+
labels = [
|
40 |
+
f"{class_name} {confidence:.2f}"
|
41 |
+
for class_name, confidence
|
42 |
+
in zip(yolo_v8_detections["class_name"], yolo_v8_detections.confidence)
|
43 |
+
]
|
44 |
+
|
45 |
+
yolo_v8_annotated_image = input_image.copy()
|
46 |
+
yolo_v8_annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
|
47 |
+
scene=yolo_v8_annotated_image, detections=yolo_v8_detections)
|
48 |
+
yolo_v8_annotated_image = LABEL_ANNOTATORS.annotate(
|
49 |
+
scene=yolo_v8_annotated_image, detections=yolo_v8_detections, labels=labels)
|
50 |
+
|
51 |
+
yolo_nas_result = YOLO_NAS_MODEL.infer(
|
52 |
+
input_image,
|
53 |
+
confidence=confidence_threshold,
|
54 |
+
iou_threshold=iou_threshold
|
55 |
+
)[0]
|
56 |
+
yolo_nas_detections = sv.Detections.from_inference(yolo_nas_result)
|
57 |
+
|
58 |
+
labels = [
|
59 |
+
f"{class_name} {confidence:.2f}"
|
60 |
+
for class_name, confidence
|
61 |
+
in zip(yolo_nas_detections["class_name"], yolo_nas_detections.confidence)
|
62 |
+
]
|
63 |
+
|
64 |
+
yolo_nas_annotated_image = input_image.copy()
|
65 |
+
yolo_nas_annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
|
66 |
+
scene=yolo_nas_annotated_image, detections=yolo_nas_detections)
|
67 |
+
yolo_nas_annotated_image = LABEL_ANNOTATORS.annotate(
|
68 |
+
scene=yolo_nas_annotated_image, detections=yolo_nas_detections, labels=labels)
|
69 |
+
|
70 |
+
yolo_v9_result = YOLO_V9_MODEL.infer(
|
71 |
+
input_image,
|
72 |
+
confidence=confidence_threshold,
|
73 |
+
iou_threshold=iou_threshold
|
74 |
+
)[0]
|
75 |
+
yolo_v9_detections = sv.Detections.from_inference(yolo_v9_result)
|
76 |
+
|
77 |
+
labels = [
|
78 |
+
f"{class_name} {confidence:.2f}"
|
79 |
+
for class_name, confidence
|
80 |
+
in zip(yolo_v9_detections["class_name"], yolo_v9_detections.confidence)
|
81 |
+
]
|
82 |
+
|
83 |
+
yolo_v9_annotated_image = input_image.copy()
|
84 |
+
yolo_v9_annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(
|
85 |
+
scene=yolo_v9_annotated_image, detections=yolo_v9_detections)
|
86 |
+
yolo_v9_annotated_image = LABEL_ANNOTATORS.annotate(
|
87 |
+
scene=yolo_v9_annotated_image, detections=yolo_v9_detections, labels=labels)
|
88 |
+
|
89 |
+
return yolo_v8_annotated_image, yolo_nas_annotated_image, yolo_v9_annotated_image
|
90 |
+
|
91 |
+
|
92 |
+
confidence_threshold_component = gr.Slider(
|
93 |
+
minimum=0,
|
94 |
+
maximum=1.0,
|
95 |
+
value=0.3,
|
96 |
+
step=0.01,
|
97 |
+
label="Confidence Threshold",
|
98 |
+
info=(
|
99 |
+
"The confidence threshold for the YOLO model. Lower the threshold to "
|
100 |
+
"reduce false negatives, enhancing the model's sensitivity to detect "
|
101 |
+
"sought-after objects. Conversely, increase the threshold to minimize false "
|
102 |
+
"positives, preventing the model from identifying objects it shouldn't."
|
103 |
+
))
|
104 |
+
|
105 |
+
iou_threshold_component = gr.Slider(
|
106 |
+
minimum=0,
|
107 |
+
maximum=1.0,
|
108 |
+
value=0.5,
|
109 |
+
step=0.01,
|
110 |
+
label="IoU Threshold",
|
111 |
+
info=(
|
112 |
+
"The Intersection over Union (IoU) threshold for non-maximum suppression. "
|
113 |
+
"Decrease the value to lessen the occurrence of overlapping bounding boxes, "
|
114 |
+
"making the detection process stricter. On the other hand, increase the value "
|
115 |
+
"to allow more overlapping bounding boxes, accommodating a broader range of "
|
116 |
+
"detections."
|
117 |
+
))
|
118 |
+
|
119 |
+
|
120 |
+
with gr.Blocks() as demo:
|
121 |
+
gr.Markdown(MARKDOWN)
|
122 |
+
with gr.Accordion("Configuration", open=False):
|
123 |
+
confidence_threshold_component.render()
|
124 |
+
iou_threshold_component.render()
|
125 |
+
with gr.Row():
|
126 |
+
input_image_component = gr.Image(
|
127 |
+
type='numpy',
|
128 |
+
label='Input Image'
|
129 |
+
)
|
130 |
+
yolo_v8_output_image_component = gr.Image(
|
131 |
+
type='numpy',
|
132 |
+
label='YOLOv8 Output'
|
133 |
+
)
|
134 |
+
with gr.Row():
|
135 |
+
yolo_nas_output_image_component = gr.Image(
|
136 |
+
type='numpy',
|
137 |
+
label='YOLO-NAS Output'
|
138 |
+
)
|
139 |
+
yolo_v9_output_image_component = gr.Image(
|
140 |
+
type='numpy',
|
141 |
+
label='YOLOv9 Output'
|
142 |
+
)
|
143 |
+
submit_button_component = gr.Button(
|
144 |
+
value='Submit',
|
145 |
+
scale=1,
|
146 |
+
variant='primary'
|
147 |
+
)
|
148 |
+
gr.Examples(
|
149 |
+
fn=process_image,
|
150 |
+
examples=IMAGE_EXAMPLES,
|
151 |
+
inputs=[
|
152 |
+
input_image_component,
|
153 |
+
confidence_threshold_component,
|
154 |
+
iou_threshold_component
|
155 |
+
],
|
156 |
+
outputs=[
|
157 |
+
yolo_v8_output_image_component,
|
158 |
+
yolo_nas_output_image_component,
|
159 |
+
yolo_v9_output_image_component
|
160 |
+
]
|
161 |
+
)
|
162 |
+
|
163 |
+
submit_button_component.click(
|
164 |
+
fn=process_image,
|
165 |
+
inputs=[
|
166 |
+
input_image_component,
|
167 |
+
confidence_threshold_component,
|
168 |
+
iou_threshold_component
|
169 |
+
],
|
170 |
+
outputs=[
|
171 |
+
yolo_v8_output_image_component,
|
172 |
+
yolo_nas_output_image_component,
|
173 |
+
yolo_v9_output_image_component
|
174 |
+
]
|
175 |
+
)
|
176 |
+
|
177 |
+
demo.launch(debug=False, show_error=True, max_threads=1)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.19.2
|
2 |
+
inference==0.9.15
|
3 |
+
supervision==0.18.0
|