File size: 2,771 Bytes
b4e0431 a81b4f4 b4e0431 9633e6a b4e0431 d7a843d b4e0431 d7a843d b4e0431 9633e6a fb21251 9633e6a b4e0431 d7a843d b4e0431 d6b8beb b4e0431 d7a843d b4e0431 d7a843d b4e0431 9633e6a b4e0431 d7a843d b4e0431 9633e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import torch, torchvision
import torch.nn.functional as F
import numpy as np
from PIL import Image, ImageColor
from diffusers import DDPMPipeline
from diffusers import DDIMScheduler
device = 'mps' if torch.backends.mps.is_available() else 'cuda' if torch.cuda.is_available() else 'cpu'
# Load the pretrained pipeline
pipeline_name = 'johnowhitaker/sd-class-wikiart-from-bedrooms'
image_pipe = DDPMPipeline.from_pretrained(pipeline_name).to(device)
# Set up the scheduler
scheduler = DDIMScheduler.from_pretrained(pipeline_name)
scheduler.set_timesteps(num_inference_steps=20)
# The guidance function
def color_loss(images, target_color=(0.1, 0.9, 0.5)):
"""Given a target color (R, G, B) return a loss for how far away on average
the images' pixels are from that color. Defaults to a light teal: (0.1, 0.9, 0.5) """
target = torch.tensor(target_color).to(images.device) * 2 - 1 # Map target color to (-1, 1)
target = target[None, :, None, None] # Get shape right to work with the images (b, c, h, w)
error = torch.abs(images - target).mean() # Mean absolute difference between the image pixels and the target color
return error
# And the core function to generate an image given the relevant inputs
def generate(color, guidance_loss_scale):
target_color = ImageColor.getcolor(color, "RGB") # Target color as RGB
target_color = [a/255 for a in target_color] # Rescale from (0, 255) to (0, 1)
x = torch.randn(1, 3, 256, 256).to(device)
for i, t in enumerate(scheduler.timesteps):
model_input = scheduler.scale_model_input(x, t)
with torch.no_grad():
noise_pred = image_pipe.unet(model_input, t)["sample"]
x = x.detach().requires_grad_()
x0 = scheduler.step(noise_pred, t, x).pred_original_sample
loss = color_loss(x0, target_color) * guidance_loss_scale
cond_grad = -torch.autograd.grad(loss, x)[0]
x = x.detach() + cond_grad
x = scheduler.step(noise_pred, t, x).prev_sample
grid = torchvision.utils.make_grid(x, nrow=4)
im = grid.permute(1, 2, 0).cpu().clip(-1, 1)*0.5 + 0.5
im = Image.fromarray(np.array(im*255).astype(np.uint8))
im.save('test.jpeg')
return im
# See the gradio docs for the types of inputs and outputs available
inputs = [
gr.ColorPicker(label="color", value='55FFAA'), # Add any inputs you need here
gr.Slider(label="guidance_scale", minimum=0, maximum=30, value=3)
]
outputs = gr.Image(label="result")
# Setting up a minimal interface to our function:
demo = gr.Interface(
fn=generate,
inputs=inputs,
outputs=outputs,
examples=[
["#BB2266", 3],["#44CCAA", 5] # You can provide some example inputs to get people started
],
)
# And launching
if __name__ == "__main__":
demo.launch(enable_queue=True)
|