Jarod Castillo commited on
Commit
bb70eb3
1 Parent(s): 17d67e8
Files changed (39) hide show
  1. .gitignore +393 -0
  2. CHANGELOG.md +12 -0
  3. LICENSE +21 -0
  4. app.py +704 -0
  5. config.py +99 -0
  6. hubert_base.pt +3 -0
  7. lib/infer_pack/attentions.py +417 -0
  8. lib/infer_pack/commons.py +166 -0
  9. lib/infer_pack/models.py +1142 -0
  10. lib/infer_pack/models_dml.py +1124 -0
  11. lib/infer_pack/models_onnx.py +819 -0
  12. lib/infer_pack/modules.py +522 -0
  13. lib/infer_pack/modules/F0Predictor/DioF0Predictor.py +90 -0
  14. lib/infer_pack/modules/F0Predictor/F0Predictor.py +16 -0
  15. lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py +86 -0
  16. lib/infer_pack/modules/F0Predictor/PMF0Predictor.py +97 -0
  17. lib/infer_pack/modules/F0Predictor/__init__.py +0 -0
  18. lib/infer_pack/onnx_inference.py +145 -0
  19. lib/infer_pack/transforms.py +209 -0
  20. requirements.txt +21 -0
  21. rmvpe.pt +3 -0
  22. rmvpe.py +432 -0
  23. vc_infer_pipeline.py +443 -0
  24. vocal_isolation/constants.py +13 -0
  25. vocal_isolation/loader.py +32 -0
  26. vocal_isolation/models/kimvocal.py +115 -0
  27. vocal_isolation/models/mdx_net.py +691 -0
  28. vocal_isolation/pretrained_models/vocals.onnx +3 -0
  29. vocal_isolation/short_time_fourier_transform.py +50 -0
  30. vocal_isolation/vocal_isolation.py +28 -0
  31. weights/Blackpink/lisa/added_IVF402_Flat_nprobe_1_blackpink-lisa-podcast_v2.index +3 -0
  32. weights/Blackpink/lisa/cover.png +3 -0
  33. weights/Blackpink/lisa/lisa.pth +3 -0
  34. weights/Blackpink/model_info.json +10 -0
  35. weights/Gidle/miyeon/added_IVF455_Flat_nprobe_1_gidle-miyeon_v2.index +3 -0
  36. weights/Gidle/miyeon/cover.png +3 -0
  37. weights/Gidle/miyeon/miyeon.pth +3 -0
  38. weights/Gidle/model_info.json +10 -0
  39. weights/folder_info.json +14 -0
.gitignore ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Ignore Visual Studio temporary files, build results, and
2
+ ## files generated by popular Visual Studio add-ons.
3
+ ##
4
+ ## Get latest from https://github.com/github/gitignore/blob/master/VisualStudio.gitignore
5
+
6
+ # Smotto Custom Files
7
+ .output/result/combine.mp3
8
+
9
+ # User-specific files
10
+ *.rsuser
11
+ *.suo
12
+ *.user
13
+ *.userosscache
14
+ *.sln.docstates
15
+
16
+ # User-specific files (MonoDevelop/Xamarin Studio)
17
+ *.userprefs
18
+
19
+ # Mono auto generated files
20
+ mono_crash.*
21
+
22
+ # Build results
23
+ [Dd]ebug/
24
+ [Dd]ebugPublic/
25
+ [Rr]elease/
26
+ [Rr]eleases/
27
+ x64/
28
+ x86/
29
+ [Ww][Ii][Nn]32/
30
+ [Aa][Rr][Mm]/
31
+ [Aa][Rr][Mm]64/
32
+ bld/
33
+ [Bb]in/
34
+ [Oo]bj/
35
+ [Oo]ut/
36
+ [Ll]og/
37
+ [Ll]ogs/
38
+ infer_pack\__pycache__
39
+ # Visual Studio 2015/2017 cache/options directory
40
+ .vs/
41
+ # Uncomment if you have tasks that create the project's static files in wwwroot
42
+ #wwwroot/
43
+
44
+ # Visual Studio 2017 auto generated files
45
+ Generated\ Files/
46
+
47
+ # MSTest test Results
48
+ [Tt]est[Rr]esult*/
49
+ [Bb]uild[Ll]og.*
50
+
51
+ # NUnit
52
+ *.VisualState.xml
53
+ TestResult.xml
54
+ nunit-*.xml
55
+
56
+ # Build Results of an ATL Project
57
+ [Dd]ebugPS/
58
+ [Rr]eleasePS/
59
+ dlldata.c
60
+
61
+ # Benchmark Results
62
+ BenchmarkDotNet.Artifacts/
63
+
64
+ # .NET Core
65
+ project.lock.json
66
+ project.fragment.lock.json
67
+ artifacts/
68
+
69
+ # ASP.NET Scaffolding
70
+ ScaffoldingReadMe.txt
71
+
72
+ # StyleCop
73
+ StyleCopReport.xml
74
+
75
+ # Files built by Visual Studio
76
+ *_i.c
77
+ *_p.c
78
+ *_h.h
79
+ *.ilk
80
+ *.meta
81
+ *.obj
82
+ *.iobj
83
+ *.pch
84
+ *.pdb
85
+ *.ipdb
86
+ *.pgc
87
+ *.pgd
88
+ *.rsp
89
+ *.sbr
90
+ *.tlb
91
+ *.tli
92
+ *.tlh
93
+ *.tmp
94
+ *.tmp_proj
95
+ *_wpftmp.csproj
96
+ *.log
97
+ *.vspscc
98
+ *.vssscc
99
+ .builds
100
+ *.pidb
101
+ *.svclog
102
+ *.scc
103
+
104
+ # Chutzpah Test files
105
+ _Chutzpah*
106
+
107
+ # Visual C++ cache files
108
+ ipch/
109
+ *.aps
110
+ *.ncb
111
+ *.opendb
112
+ *.opensdf
113
+ *.sdf
114
+ *.cachefile
115
+ *.VC.db
116
+ *.VC.VC.opendb
117
+
118
+ # Visual Studio profiler
119
+ *.psess
120
+ *.vsp
121
+ *.vspx
122
+ *.sap
123
+
124
+ # Visual Studio Trace Files
125
+ *.e2e
126
+
127
+ # TFS 2012 Local Workspace
128
+ $tf/
129
+
130
+ # Guidance Automation Toolkit
131
+ *.gpState
132
+
133
+ # ReSharper is a .NET coding add-in
134
+ _ReSharper*/
135
+ *.[Rr]e[Ss]harper
136
+ *.DotSettings.user
137
+
138
+ # TeamCity is a build add-in
139
+ _TeamCity*
140
+
141
+ # DotCover is a Code Coverage Tool
142
+ *.dotCover
143
+
144
+ # AxoCover is a Code Coverage Tool
145
+ .axoCover/*
146
+ !.axoCover/settings.json
147
+
148
+ # Coverlet is a free, cross platform Code Coverage Tool
149
+ coverage*.json
150
+ coverage*.xml
151
+ coverage*.info
152
+
153
+ # Visual Studio code coverage results
154
+ *.coverage
155
+ *.coveragexml
156
+
157
+ # NCrunch
158
+ _NCrunch_*
159
+ .*crunch*.local.xml
160
+ nCrunchTemp_*
161
+
162
+ # MightyMoose
163
+ *.mm.*
164
+ AutoTest.Net/
165
+
166
+ # Web workbench (sass)
167
+ .sass-cache/
168
+
169
+ # Installshield output folder
170
+ [Ee]xpress/
171
+
172
+ # DocProject is a documentation generator add-in
173
+ DocProject/buildhelp/
174
+ DocProject/Help/*.HxT
175
+ DocProject/Help/*.HxC
176
+ DocProject/Help/*.hhc
177
+ DocProject/Help/*.hhk
178
+ DocProject/Help/*.hhp
179
+ DocProject/Help/Html2
180
+ DocProject/Help/html
181
+
182
+ # Click-Once directory
183
+ publish/
184
+
185
+ # Publish Web Output
186
+ *.[Pp]ublish.xml
187
+ *.azurePubxml
188
+ # Note: Comment the next line if you want to checkin your web deploy settings,
189
+ # but database connection strings (with potential passwords) will be unencrypted
190
+ *.pubxml
191
+ *.publishproj
192
+
193
+ # Microsoft Azure Web App publish settings. Comment the next line if you want to
194
+ # checkin your Azure Web App publish settings, but sensitive information contained
195
+ # in these scripts will be unencrypted
196
+ PublishScripts/
197
+
198
+ # NuGet Packages
199
+ *.nupkg
200
+ # NuGet Symbol Packages
201
+ *.snupkg
202
+ # The packages folder can be ignored because of Package Restore
203
+ **/[Pp]ackages/*
204
+ # except build/, which is used as an MSBuild target.
205
+ !**/[Pp]ackages/build/
206
+ # Uncomment if necessary however generally it will be regenerated when needed
207
+ #!**/[Pp]ackages/repositories.config
208
+ # NuGet v3's project.json files produces more ignorable files
209
+ *.nuget.props
210
+ *.nuget.targets
211
+
212
+ # Microsoft Azure Build Output
213
+ csx/
214
+ *.build.csdef
215
+
216
+ # Microsoft Azure Emulator
217
+ ecf/
218
+ rcf/
219
+
220
+ # Windows Store app package directories and files
221
+ AppPackages/
222
+ BundleArtifacts/
223
+ Package.StoreAssociation.xml
224
+ _pkginfo.txt
225
+ *.appx
226
+ *.appxbundle
227
+ *.appxupload
228
+
229
+ # Visual Studio cache files
230
+ # files ending in .cache can be ignored
231
+ *.[Cc]ache
232
+ # but keep track of directories ending in .cache
233
+ !?*.[Cc]ache/
234
+
235
+ # Others
236
+ ClientBin/
237
+ ~$*
238
+ *~
239
+ *.dbmdl
240
+ *.dbproj.schemaview
241
+ *.jfm
242
+ *.pfx
243
+ *.publishsettings
244
+ orleans.codegen.cs
245
+
246
+ # Including strong name files can present a security risk
247
+ # (https://github.com/github/gitignore/pull/2483#issue-259490424)
248
+ #*.snk
249
+
250
+ # Since there are multiple workflows, uncomment next line to ignore bower_components
251
+ # (https://github.com/github/gitignore/pull/1529#issuecomment-104372622)
252
+ #bower_components/
253
+
254
+ # RIA/Silverlight projects
255
+ Generated_Code/
256
+
257
+ # Backup & report files from converting an old project file
258
+ # to a newer Visual Studio version. Backup files are not needed,
259
+ # because we have git ;-)
260
+ _UpgradeReport_Files/
261
+ Backup*/
262
+ UpgradeLog*.XML
263
+ UpgradeLog*.htm
264
+ ServiceFabricBackup/
265
+ *.rptproj.bak
266
+
267
+ # SQL Server files
268
+ *.mdf
269
+ *.ldf
270
+ *.ndf
271
+
272
+ # Business Intelligence projects
273
+ *.rdl.data
274
+ *.bim.layout
275
+ *.bim_*.settings
276
+ *.rptproj.rsuser
277
+ *- [Bb]ackup.rdl
278
+ *- [Bb]ackup ([0-9]).rdl
279
+ *- [Bb]ackup ([0-9][0-9]).rdl
280
+
281
+ # Microsoft Fakes
282
+ FakesAssemblies/
283
+
284
+ # GhostDoc plugin setting file
285
+ *.GhostDoc.xml
286
+
287
+ # Node.js Tools for Visual Studio
288
+ .ntvs_analysis.dat
289
+ node_modules/
290
+
291
+ # Visual Studio 6 build log
292
+ *.plg
293
+
294
+ # Visual Studio 6 workspace options file
295
+ *.opt
296
+
297
+ # Visual Studio 6 auto-generated workspace file (contains which files were open etc.)
298
+ *.vbw
299
+
300
+ # Visual Studio LightSwitch build output
301
+ **/*.HTMLClient/GeneratedArtifacts
302
+ **/*.DesktopClient/GeneratedArtifacts
303
+ **/*.DesktopClient/ModelManifest.xml
304
+ **/*.Server/GeneratedArtifacts
305
+ **/*.Server/ModelManifest.xml
306
+ _Pvt_Extensions
307
+
308
+ # Paket dependency manager
309
+ .paket/paket.exe
310
+ paket-files/
311
+
312
+ # FAKE - F# Make
313
+ .fake/
314
+
315
+ # CodeRush personal settings
316
+ .cr/personal
317
+
318
+ # Python Tools for Visual Studio (PTVS)
319
+ __pycache__/
320
+
321
+
322
+ # Cake - Uncomment if you are using it
323
+ # tools/**
324
+ # !tools/packages.config
325
+
326
+ # Tabs Studio
327
+ *.tss
328
+
329
+ # Telerik's JustMock configuration file
330
+ *.jmconfig
331
+
332
+ # BizTalk build output
333
+ *.btp.cs
334
+ *.btm.cs
335
+ *.odx.cs
336
+ *.xsd.cs
337
+
338
+ # OpenCover UI analysis results
339
+ OpenCover/
340
+
341
+ # Azure Stream Analytics local run output
342
+ ASALocalRun/
343
+
344
+ # MSBuild Binary and Structured Log
345
+ *.binlog
346
+
347
+ # NVidia Nsight GPU debugger configuration file
348
+ *.nvuser
349
+
350
+ # MFractors (Xamarin productivity tool) working folder
351
+ .mfractor/
352
+
353
+ # Local History for Visual Studio
354
+ .localhistory/
355
+
356
+ # BeatPulse healthcheck temp database
357
+ healthchecksdb
358
+
359
+ # Backup folder for Package Reference Convert tool in Visual Studio 2017
360
+ MigrationBackup/
361
+
362
+ # Ionide (cross platform F# VS Code tools) working folder
363
+ .ionide/
364
+
365
+ # Fody - auto-generated XML schema
366
+ FodyWeavers.xsd
367
+
368
+ # build
369
+ build
370
+ monotonic_align/core.c
371
+ *.o
372
+ *.so
373
+ *.dll
374
+
375
+ # data
376
+ /config.json
377
+ # /*.pth
378
+ *.wav
379
+ /monotonic_align/monotonic_align
380
+ /resources
381
+ /MoeGoe.spec
382
+ /dist/MoeGoe
383
+ /dist
384
+
385
+ /env
386
+ .idea
387
+ infer-web.py
388
+ infer.py
389
+ app-old.py
390
+ # hubert_base.pt
391
+ # rmvpe.pt
392
+ test.py
393
+ docs
CHANGELOG.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 13/08/2023 Changelog: <br />
2
+ - Fix bugs.
3
+
4
+ 08/08/2023 Changelog: <br />
5
+ - Limitation changes.
6
+ - UI Changes for Youtube Input.
7
+ - Added instrument volume.
8
+
9
+ 29/07/2023 Changelog: <br />
10
+ - UI Changes for Non Limitation.
11
+ - Added More Splitter Model.
12
+ - Separate Youtube Download and Splitter.
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 arkandash
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import json
4
+ import traceback
5
+ import logging
6
+ import gradio as gr
7
+ import numpy as np
8
+ import librosa
9
+ import torch
10
+ import asyncio
11
+ import edge_tts
12
+ import yt_dlp
13
+ import ffmpeg
14
+ import subprocess
15
+ import sys
16
+ import io
17
+ import wave
18
+ from datetime import datetime
19
+ from fairseq import checkpoint_utils
20
+ from lib.infer_pack.models import (
21
+ SynthesizerTrnMs256NSFsid,
22
+ SynthesizerTrnMs256NSFsid_nono,
23
+ SynthesizerTrnMs768NSFsid,
24
+ SynthesizerTrnMs768NSFsid_nono,
25
+ )
26
+ from vc_infer_pipeline import VC
27
+ from config import Config
28
+
29
+ # Added an extra way to split audio
30
+ from vocal_isolation.vocal_isolation import isolate_vocals_kim_vocals
31
+
32
+ config = Config()
33
+ logging.getLogger("numba").setLevel(logging.WARNING)
34
+ spaces = os.getenv("SYSTEM") == "spaces"
35
+ force_support = None
36
+ if config.unsupported is False:
37
+ if config.device == "mps" or config.device == "cpu":
38
+ force_support = False
39
+ else:
40
+ force_support = True
41
+
42
+ audio_mode = []
43
+ f0method_mode = []
44
+ f0method_info = ""
45
+
46
+ if force_support is False or spaces is True:
47
+ if spaces is True:
48
+ audio_mode = ["Upload audio", "TTS Audio"]
49
+ else:
50
+ audio_mode = ["Input path", "Upload audio", "TTS Audio"]
51
+ f0method_mode = ["pm", "harvest"]
52
+ f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better). (Default: PM)"
53
+ else:
54
+ audio_mode = ["Input path", "Upload audio", "Youtube", "TTS Audio"]
55
+ f0method_mode = ["pm", "harvest", "crepe"]
56
+ f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
57
+
58
+ if os.path.isfile("rmvpe.pt"):
59
+ f0method_mode.insert(2, "rmvpe")
60
+
61
+ def create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, file_index):
62
+ def vc_fn(
63
+ vc_audio_mode,
64
+ vc_input,
65
+ vc_upload,
66
+ tts_text,
67
+ tts_voice,
68
+ f0_up_key,
69
+ f0_method,
70
+ index_rate,
71
+ filter_radius,
72
+ resample_sr,
73
+ rms_mix_rate,
74
+ protect,
75
+ ):
76
+ try:
77
+ logs = []
78
+ print(f"Converting using {model_name}...")
79
+ logs.append(f"Converting using {model_name}...")
80
+ yield "\n".join(logs), None
81
+ if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
82
+ audio, sr = librosa.load(vc_input, sr=16000, mono=True)
83
+ elif vc_audio_mode == "Upload audio":
84
+ if vc_upload is None:
85
+ return "You need to upload an audio", None
86
+ sampling_rate, audio = vc_upload
87
+ duration = audio.shape[0] / sampling_rate
88
+ if duration > 20 and spaces:
89
+ return "Please upload an audio file that is less than 20 seconds. If you need to generate a longer audio file, please use Colab.", None
90
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
91
+ if len(audio.shape) > 1:
92
+ audio = librosa.to_mono(audio.transpose(1, 0))
93
+ if sampling_rate != 16000:
94
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
95
+ elif vc_audio_mode == "TTS Audio":
96
+ if len(tts_text) > 100 and spaces:
97
+ return "Text is too long", None
98
+ if tts_text is None or tts_voice is None:
99
+ return "You need to enter text and select a voice", None
100
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
101
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
102
+ vc_input = "tts.mp3"
103
+ times = [0, 0, 0]
104
+ f0_up_key = int(f0_up_key)
105
+ audio_opt = vc.pipeline(
106
+ hubert_model,
107
+ net_g,
108
+ 0,
109
+ audio,
110
+ vc_input,
111
+ times,
112
+ f0_up_key,
113
+ f0_method,
114
+ file_index,
115
+ # file_big_npy,
116
+ index_rate,
117
+ if_f0,
118
+ filter_radius,
119
+ tgt_sr,
120
+ resample_sr,
121
+ rms_mix_rate,
122
+ version,
123
+ protect,
124
+ f0_file=None,
125
+ )
126
+ info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
127
+ print(f"{model_name} | {info}")
128
+ logs.append(f"Successfully Convert {model_name}\n{info}")
129
+ yield "\n".join(logs), (tgt_sr, audio_opt)
130
+ except:
131
+ info = traceback.format_exc()
132
+ print(info)
133
+ yield info, None
134
+ return vc_fn
135
+
136
+ def load_model():
137
+ categories = []
138
+ if os.path.isfile("weights/folder_info.json"):
139
+ with open("weights/folder_info.json", "r", encoding="utf-8") as f:
140
+ folder_info = json.load(f)
141
+ for category_name, category_info in folder_info.items():
142
+ if not category_info['enable']:
143
+ continue
144
+ category_title = category_info['title']
145
+ category_folder = category_info['folder_path']
146
+ description = category_info['description']
147
+ models = []
148
+ with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
149
+ models_info = json.load(f)
150
+ for character_name, info in models_info.items():
151
+ if not info['enable']:
152
+ continue
153
+ model_title = info['title']
154
+ model_name = info['model_path']
155
+ model_author = info.get("author", None)
156
+ model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
157
+ model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
158
+ cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
159
+ tgt_sr = cpt["config"][-1]
160
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
161
+ if_f0 = cpt.get("f0", 1)
162
+ version = cpt.get("version", "v1")
163
+ if version == "v1":
164
+ if if_f0 == 1:
165
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
166
+ else:
167
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
168
+ model_version = "V1"
169
+ elif version == "v2":
170
+ if if_f0 == 1:
171
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
172
+ else:
173
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
174
+ model_version = "V2"
175
+ del net_g.enc_q
176
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
177
+ net_g.eval().to(config.device)
178
+ if config.is_half:
179
+ net_g = net_g.half()
180
+ else:
181
+ net_g = net_g.float()
182
+ vc = VC(tgt_sr, config)
183
+ print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
184
+ models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_name, tgt_sr, net_g, vc, if_f0, version, model_index)))
185
+ categories.append([category_title, category_folder, description, models])
186
+ else:
187
+ categories = []
188
+ return categories
189
+
190
+ def download_audio(url, audio_provider):
191
+ logs = []
192
+ if url == "":
193
+ logs.append("URL required!")
194
+ yield None, "\n".join(logs)
195
+ return None, "\n".join(logs)
196
+ if not os.path.exists("dl_audio"):
197
+ os.mkdir("dl_audio")
198
+ if audio_provider == "Youtube":
199
+ logs.append("Downloading the audio...")
200
+ yield None, "\n".join(logs)
201
+ ydl_opts = {
202
+ 'noplaylist': True,
203
+ 'format': 'bestaudio/best',
204
+ 'postprocessors': [{
205
+ 'key': 'FFmpegExtractAudio',
206
+ 'preferredcodec': 'wav',
207
+ }],
208
+ "outtmpl": 'dl_audio/audio',
209
+ }
210
+ audio_path = "dl_audio/audio.wav"
211
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
212
+ ydl.download([url])
213
+ logs.append("Download Complete.")
214
+ yield audio_path, "\n".join(logs)
215
+
216
+ def cut_vocal_and_inst_wrapper(split_model):
217
+
218
+ if split_model == "mdx_net_kim_vocal":
219
+ # Create the directory if it doesn't exist
220
+ directory_path = "./output/mdx_net_kim_vocal/audio"
221
+ if not os.path.exists(directory_path):
222
+ os.makedirs(directory_path)
223
+ print(f"Directory '{directory_path}' created.")
224
+ else:
225
+ print(f"Directory '{directory_path}' already exists.")
226
+
227
+ # Splitting
228
+ logs = []
229
+ logs.append("Starting audio splitting process...")
230
+ yield "\n".join(logs), None, None, None
231
+ isolate_vocals_kim_vocals()
232
+ vocal = f"output/{split_model}/audio/vocals.wav"
233
+ inst = f"output/{split_model}/audio/no_vocals.wav"
234
+ logs.append("Audio splitting complete.")
235
+ yield "\n".join(logs), vocal, inst, vocal
236
+ else:
237
+ cut_vocal_and_inst(split_model)
238
+
239
+ def cut_vocal_and_inst(split_model):
240
+ logs = []
241
+ logs.append("Starting the audio splitting process...")
242
+ yield "\n".join(logs), None, None, None
243
+ command = f"demucs --two-stems=vocals -n {split_model} dl_audio/audio.wav -o output"
244
+ result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
245
+ for line in result.stdout:
246
+ logs.append(line)
247
+ yield "\n".join(logs), None, None, None
248
+ print(result.stdout)
249
+ vocal = f"output/{split_model}/audio/vocals.wav"
250
+ inst = f"output/{split_model}/audio/no_vocals.wav"
251
+ logs.append("Audio splitting complete.")
252
+ yield "\n".join(logs), vocal, inst, vocal
253
+
254
+ def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
255
+ if not os.path.exists("output/result"):
256
+ os.mkdir("output/result")
257
+ vocal_path = "output/result/output.wav"
258
+ output_path = "output/result/combine.mp3"
259
+ inst_path = f"output/{split_model}/audio/no_vocals.wav"
260
+ with wave.open(vocal_path, "w") as wave_file:
261
+ wave_file.setnchannels(1)
262
+ wave_file.setsampwidth(2)
263
+ wave_file.setframerate(audio_data[0])
264
+ wave_file.writeframes(audio_data[1].tobytes())
265
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
266
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
267
+ print(result.stdout.decode())
268
+ return output_path
269
+
270
+ def load_hubert():
271
+ global hubert_model
272
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
273
+ ["hubert_base.pt"],
274
+ suffix="",
275
+ )
276
+ hubert_model = models[0]
277
+ hubert_model = hubert_model.to(config.device)
278
+ if config.is_half:
279
+ hubert_model = hubert_model.half()
280
+ else:
281
+ hubert_model = hubert_model.float()
282
+ hubert_model.eval()
283
+
284
+ def change_audio_mode(vc_audio_mode):
285
+ if vc_audio_mode == "Input path":
286
+ return (
287
+ # Input & Upload
288
+ gr.Textbox.update(visible=True),
289
+ gr.Checkbox.update(visible=False),
290
+ gr.Audio.update(visible=False),
291
+ # Youtube
292
+ gr.Dropdown.update(visible=False),
293
+ gr.Textbox.update(visible=False),
294
+ gr.Textbox.update(visible=False),
295
+ gr.Button.update(visible=False),
296
+ # Splitter
297
+ gr.Dropdown.update(visible=False),
298
+ gr.Textbox.update(visible=False),
299
+ gr.Button.update(visible=False),
300
+ gr.Audio.update(visible=False),
301
+ gr.Audio.update(visible=False),
302
+ gr.Audio.update(visible=False),
303
+ gr.Slider.update(visible=False),
304
+ gr.Slider.update(visible=False),
305
+ gr.Audio.update(visible=False),
306
+ gr.Button.update(visible=False),
307
+ # TTS
308
+ gr.Textbox.update(visible=False),
309
+ gr.Dropdown.update(visible=False)
310
+ )
311
+ elif vc_audio_mode == "Upload audio":
312
+ return (
313
+ # Input & Upload
314
+ gr.Textbox.update(visible=False),
315
+ gr.Checkbox.update(visible=True),
316
+ gr.Audio.update(visible=True),
317
+ # Youtube
318
+ gr.Dropdown.update(visible=False),
319
+ gr.Textbox.update(visible=False),
320
+ gr.Textbox.update(visible=False),
321
+ gr.Button.update(visible=False),
322
+ # Splitter
323
+ gr.Dropdown.update(visible=False),
324
+ gr.Textbox.update(visible=False),
325
+ gr.Button.update(visible=False),
326
+ gr.Audio.update(visible=False),
327
+ gr.Audio.update(visible=False),
328
+ gr.Audio.update(visible=False),
329
+ gr.Slider.update(visible=False),
330
+ gr.Slider.update(visible=False),
331
+ gr.Audio.update(visible=False),
332
+ gr.Button.update(visible=False),
333
+ # TTS
334
+ gr.Textbox.update(visible=False),
335
+ gr.Dropdown.update(visible=False)
336
+ )
337
+ elif vc_audio_mode == "Youtube":
338
+ return (
339
+ # Input & Upload
340
+ gr.Textbox.update(visible=False),
341
+ gr.Checkbox.update(visible=False),
342
+ gr.Audio.update(visible=False),
343
+ # Youtube
344
+ gr.Dropdown.update(visible=True),
345
+ gr.Textbox.update(visible=True),
346
+ gr.Textbox.update(visible=True),
347
+ gr.Button.update(visible=True),
348
+ # Splitter
349
+ gr.Dropdown.update(visible=True),
350
+ gr.Textbox.update(visible=True),
351
+ gr.Button.update(visible=True),
352
+ gr.Audio.update(visible=True),
353
+ gr.Audio.update(visible=True),
354
+ gr.Audio.update(visible=True),
355
+ gr.Slider.update(visible=True),
356
+ gr.Slider.update(visible=True),
357
+ gr.Audio.update(visible=True),
358
+ gr.Button.update(visible=True),
359
+ # TTS
360
+ gr.Textbox.update(visible=False),
361
+ gr.Dropdown.update(visible=False)
362
+ )
363
+ elif vc_audio_mode == "TTS Audio":
364
+ return (
365
+ # Input & Upload
366
+ gr.Textbox.update(visible=False),
367
+ gr.Checkbox.update(visible=False),
368
+ gr.Audio.update(visible=False),
369
+ # Youtube
370
+ gr.Dropdown.update(visible=False),
371
+ gr.Textbox.update(visible=False),
372
+ gr.Textbox.update(visible=False),
373
+ gr.Button.update(visible=False),
374
+ # Splitter
375
+ gr.Dropdown.update(visible=False),
376
+ gr.Textbox.update(visible=False),
377
+ gr.Button.update(visible=False),
378
+ gr.Audio.update(visible=False),
379
+ gr.Audio.update(visible=False),
380
+ gr.Audio.update(visible=False),
381
+ gr.Slider.update(visible=False),
382
+ gr.Slider.update(visible=False),
383
+ gr.Audio.update(visible=False),
384
+ gr.Button.update(visible=False),
385
+ # TTS
386
+ gr.Textbox.update(visible=True),
387
+ gr.Dropdown.update(visible=True)
388
+ )
389
+
390
+ def use_microphone(microphone):
391
+ if microphone == True:
392
+ return gr.Audio.update(source="microphone")
393
+ else:
394
+ return gr.Audio.update(source="upload")
395
+
396
+ if __name__ == '__main__':
397
+ load_hubert()
398
+ categories = load_model()
399
+ tts_voice_list = asyncio.new_event_loop().run_until_complete(edge_tts.list_voices())
400
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
401
+ with gr.Blocks() as app:
402
+ gr.Markdown(
403
+ "<div align='center'>\n\n"+
404
+ "# Smotto RVC v2 Inference\n\n"+
405
+ "[![Repository](https://img.shields.io/badge/Github-Multi%20Model%20RVC%20Inference-blue?style=for-the-badge&logo=github)](https://github.com/ArkanDash/Multi-Model-RVC-Inference)\n\n"+
406
+ "</div>"
407
+ )
408
+ if categories == []:
409
+ gr.Markdown(
410
+ "<div align='center'>\n\n"+
411
+ "## No model found, please add the model into weights folder\n\n"+
412
+ "</div>"
413
+ )
414
+ for (folder_title, folder, description, models) in categories:
415
+ with gr.TabItem(folder_title):
416
+ if description:
417
+ gr.Markdown(f"### <center> {description}")
418
+ with gr.Tabs():
419
+ if not models:
420
+ gr.Markdown("# <center> No Model Loaded.")
421
+ gr.Markdown("## <center> Please add the model or fix your model path.")
422
+ continue
423
+ for (name, title, author, cover, model_version, vc_fn) in models:
424
+ with gr.TabItem(name):
425
+ with gr.Row():
426
+ gr.Markdown(
427
+ '<div align="center">'
428
+ f'<div>{title}</div>\n'+
429
+ f'<div>RVC {model_version} Model</div>\n'+
430
+ (f'<div>Model author: {author}</div>' if author else "")+
431
+ (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
432
+ '</div>'
433
+ )
434
+ with gr.Row():
435
+ if spaces is False:
436
+ with gr.TabItem("Input"):
437
+ with gr.Row():
438
+ with gr.Column():
439
+ vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
440
+ # Input
441
+ vc_input = gr.Textbox(label="Input audio path", visible=False)
442
+ # Upload
443
+ vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
444
+ vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
445
+ # Youtube
446
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
447
+ vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
448
+ vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
449
+ vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
450
+ vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
451
+ # TTS
452
+ tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
453
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
454
+ with gr.Column():
455
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q", "mdx_net_kim_vocal"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
456
+ vc_split_log = gr.Textbox(label="Output Information", visible=False, interactive=False)
457
+ vc_split = gr.Button("Split Audio", variant="primary", visible=False)
458
+ vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
459
+ vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
460
+ with gr.TabItem("Convert"):
461
+ with gr.Row():
462
+ with gr.Column():
463
+ vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
464
+ f0method0 = gr.Radio(
465
+ label="Pitch extraction algorithm",
466
+ info=f0method_info,
467
+ choices=f0method_mode,
468
+ value="pm",
469
+ interactive=True
470
+ )
471
+ index_rate1 = gr.Slider(
472
+ minimum=0,
473
+ maximum=1,
474
+ label="Retrieval feature ratio",
475
+ info="(Default: 0.7)",
476
+ value=0.7,
477
+ interactive=True,
478
+ )
479
+ filter_radius0 = gr.Slider(
480
+ minimum=0,
481
+ maximum=7,
482
+ label="Apply Median Filtering",
483
+ info="The value represents the filter radius and can reduce breathiness.",
484
+ value=3,
485
+ step=1,
486
+ interactive=True,
487
+ )
488
+ resample_sr0 = gr.Slider(
489
+ minimum=0,
490
+ maximum=48000,
491
+ label="Resample the output audio",
492
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
493
+ value=0,
494
+ step=1,
495
+ interactive=True,
496
+ )
497
+ rms_mix_rate0 = gr.Slider(
498
+ minimum=0,
499
+ maximum=1,
500
+ label="Volume Envelope",
501
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
502
+ value=1,
503
+ interactive=True,
504
+ )
505
+ protect0 = gr.Slider(
506
+ minimum=0,
507
+ maximum=0.5,
508
+ label="Voice Protection",
509
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
510
+ value=0.5,
511
+ step=0.01,
512
+ interactive=True,
513
+ )
514
+ with gr.Column():
515
+ vc_log = gr.Textbox(label="Output Information", interactive=False)
516
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
517
+ vc_convert = gr.Button("Convert", variant="primary")
518
+ vc_vocal_volume = gr.Slider(
519
+ minimum=0,
520
+ maximum=10,
521
+ label="Vocal volume",
522
+ value=1,
523
+ interactive=True,
524
+ step=1,
525
+ info="Adjust vocal volume (Default: 1}",
526
+ visible=False
527
+ )
528
+ vc_inst_volume = gr.Slider(
529
+ minimum=0,
530
+ maximum=10,
531
+ label="Instrument volume",
532
+ value=1,
533
+ interactive=True,
534
+ step=1,
535
+ info="Adjust instrument volume (Default: 1}",
536
+ visible=False
537
+ )
538
+ vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
539
+ vc_combine = gr.Button("Combine",variant="primary", visible=False)
540
+ else:
541
+ with gr.Column():
542
+ vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
543
+ # Input
544
+ vc_input = gr.Textbox(label="Input audio path", visible=False)
545
+ # Upload
546
+ vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
547
+ vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
548
+ # Youtube
549
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
550
+ vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
551
+ vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
552
+ vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
553
+ vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
554
+ # Splitter
555
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q", "mdx_net_kim_vocal"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
556
+ vc_split_log = gr.Textbox(label="Output Information", visible=False, interactive=False)
557
+ vc_split = gr.Button("Split Audio", variant="primary", visible=False)
558
+ vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
559
+ vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
560
+ # TTS
561
+ tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
562
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
563
+ with gr.Column():
564
+ vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
565
+ f0method0 = gr.Radio(
566
+ label="Pitch extraction algorithm",
567
+ info=f0method_info,
568
+ choices=f0method_mode,
569
+ value="pm",
570
+ interactive=True
571
+ )
572
+ index_rate1 = gr.Slider(
573
+ minimum=0,
574
+ maximum=1,
575
+ label="Retrieval feature ratio",
576
+ info="(Default: 0.7)",
577
+ value=0.7,
578
+ interactive=True,
579
+ )
580
+ filter_radius0 = gr.Slider(
581
+ minimum=0,
582
+ maximum=7,
583
+ label="Apply Median Filtering",
584
+ info="The value represents the filter radius and can reduce breathiness.",
585
+ value=3,
586
+ step=1,
587
+ interactive=True,
588
+ )
589
+ resample_sr0 = gr.Slider(
590
+ minimum=0,
591
+ maximum=48000,
592
+ label="Resample the output audio",
593
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
594
+ value=0,
595
+ step=1,
596
+ interactive=True,
597
+ )
598
+ rms_mix_rate0 = gr.Slider(
599
+ minimum=0,
600
+ maximum=1,
601
+ label="Volume Envelope",
602
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
603
+ value=1,
604
+ interactive=True,
605
+ )
606
+ protect0 = gr.Slider(
607
+ minimum=0,
608
+ maximum=0.5,
609
+ label="Voice Protection",
610
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
611
+ value=0.5,
612
+ step=0.01,
613
+ interactive=True,
614
+ )
615
+ with gr.Column():
616
+ vc_log = gr.Textbox(label="Output Information", interactive=False)
617
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
618
+ vc_convert = gr.Button("Convert", variant="primary")
619
+ vc_vocal_volume = gr.Slider(
620
+ minimum=0,
621
+ maximum=10,
622
+ label="Vocal volume",
623
+ value=1,
624
+ interactive=True,
625
+ step=1,
626
+ info="Adjust vocal volume (Default: 1}",
627
+ visible=False
628
+ )
629
+ vc_inst_volume = gr.Slider(
630
+ minimum=0,
631
+ maximum=10,
632
+ label="Instrument volume",
633
+ value=1,
634
+ interactive=True,
635
+ step=1,
636
+ info="Adjust instrument volume (Default: 1}",
637
+ visible=False
638
+ )
639
+ vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
640
+ vc_combine = gr.Button("Combine",variant="primary", visible=False)
641
+ vc_convert.click(
642
+ fn=vc_fn,
643
+ inputs=[
644
+ vc_audio_mode,
645
+ vc_input,
646
+ vc_upload,
647
+ tts_text,
648
+ tts_voice,
649
+ vc_transform0,
650
+ f0method0,
651
+ index_rate1,
652
+ filter_radius0,
653
+ resample_sr0,
654
+ rms_mix_rate0,
655
+ protect0,
656
+ ],
657
+ outputs=[vc_log ,vc_output]
658
+ )
659
+ vc_download_button.click(
660
+ fn=download_audio,
661
+ inputs=[vc_link, vc_download_audio],
662
+ outputs=[vc_audio_preview, vc_log_yt]
663
+ )
664
+ vc_split.click(
665
+ fn=cut_vocal_and_inst_wrapper,
666
+ inputs=[vc_split_model],
667
+ outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview, vc_input]
668
+ )
669
+ vc_combine.click(
670
+ fn=combine_vocal_and_inst,
671
+ inputs=[vc_output, vc_vocal_volume, vc_inst_volume, vc_split_model],
672
+ outputs=[vc_combined_output]
673
+ )
674
+ vc_microphone_mode.change(
675
+ fn=use_microphone,
676
+ inputs=vc_microphone_mode,
677
+ outputs=vc_upload
678
+ )
679
+ vc_audio_mode.change(
680
+ fn=change_audio_mode,
681
+ inputs=[vc_audio_mode],
682
+ outputs=[
683
+ vc_input,
684
+ vc_microphone_mode,
685
+ vc_upload,
686
+ vc_download_audio,
687
+ vc_link,
688
+ vc_log_yt,
689
+ vc_download_button,
690
+ vc_split_model,
691
+ vc_split_log,
692
+ vc_split,
693
+ vc_audio_preview,
694
+ vc_vocal_preview,
695
+ vc_inst_preview,
696
+ vc_vocal_volume,
697
+ vc_inst_volume,
698
+ vc_combined_output,
699
+ vc_combine,
700
+ tts_text,
701
+ tts_voice
702
+ ]
703
+ )
704
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)
config.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+ import torch
4
+ from multiprocessing import cpu_count
5
+
6
+ class Config:
7
+ def __init__(self):
8
+ self.device = "cuda:0"
9
+ self.is_half = True
10
+ self.n_cpu = 0
11
+ self.gpu_name = None
12
+ self.gpu_mem = None
13
+ (
14
+ self.colab,
15
+ self.api,
16
+ self.unsupported
17
+ ) = self.arg_parse()
18
+ self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
19
+
20
+ @staticmethod
21
+ def arg_parse() -> tuple:
22
+ parser = argparse.ArgumentParser()
23
+ parser.add_argument("--colab", action="store_true", help="Launch in colab")
24
+ parser.add_argument("--api", action="store_true", help="Launch with api")
25
+ parser.add_argument("--unsupported", action="store_true", help="Enable unsupported feature")
26
+ cmd_opts = parser.parse_args()
27
+
28
+ return (
29
+ cmd_opts.colab,
30
+ cmd_opts.api,
31
+ cmd_opts.unsupported
32
+ )
33
+
34
+ # has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
35
+ # check `getattr` and try it for compatibility
36
+ @staticmethod
37
+ def has_mps() -> bool:
38
+ if not torch.backends.mps.is_available():
39
+ return False
40
+ try:
41
+ torch.zeros(1).to(torch.device("mps"))
42
+ return True
43
+ except Exception:
44
+ return False
45
+
46
+ def device_config(self) -> tuple:
47
+ if torch.cuda.is_available():
48
+ i_device = int(self.device.split(":")[-1])
49
+ self.gpu_name = torch.cuda.get_device_name(i_device)
50
+ if (
51
+ ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
52
+ or "P40" in self.gpu_name.upper()
53
+ or "1060" in self.gpu_name
54
+ or "1070" in self.gpu_name
55
+ or "1080" in self.gpu_name
56
+ ):
57
+ print("INFO: Found GPU", self.gpu_name, ", force to fp32")
58
+ self.is_half = False
59
+ else:
60
+ print("INFO: Found GPU", self.gpu_name)
61
+ self.gpu_mem = int(
62
+ torch.cuda.get_device_properties(i_device).total_memory
63
+ / 1024
64
+ / 1024
65
+ / 1024
66
+ + 0.4
67
+ )
68
+ elif self.has_mps():
69
+ print("INFO: No supported Nvidia GPU found, use MPS instead")
70
+ self.device = "mps"
71
+ self.is_half = False
72
+ else:
73
+ print("INFO: No supported Nvidia GPU found, use CPU instead")
74
+ self.device = "cpu"
75
+ self.is_half = False
76
+
77
+ if self.n_cpu == 0:
78
+ self.n_cpu = cpu_count()
79
+
80
+ if self.is_half:
81
+ # 6G显存配置
82
+ x_pad = 3
83
+ x_query = 10
84
+ x_center = 60
85
+ x_max = 65
86
+ else:
87
+ # 5G显存配置
88
+ x_pad = 1
89
+ x_query = 6
90
+ x_center = 38
91
+ x_max = 41
92
+
93
+ if self.gpu_mem != None and self.gpu_mem <= 4:
94
+ x_pad = 1
95
+ x_query = 5
96
+ x_center = 30
97
+ x_max = 32
98
+
99
+ return x_pad, x_query, x_center, x_max
hubert_base.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
3
+ size 189507909
lib/infer_pack/attentions.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from lib.infer_pack import commons
9
+ from lib.infer_pack import modules
10
+ from lib.infer_pack.modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(
15
+ self,
16
+ hidden_channels,
17
+ filter_channels,
18
+ n_heads,
19
+ n_layers,
20
+ kernel_size=1,
21
+ p_dropout=0.0,
22
+ window_size=10,
23
+ **kwargs
24
+ ):
25
+ super().__init__()
26
+ self.hidden_channels = hidden_channels
27
+ self.filter_channels = filter_channels
28
+ self.n_heads = n_heads
29
+ self.n_layers = n_layers
30
+ self.kernel_size = kernel_size
31
+ self.p_dropout = p_dropout
32
+ self.window_size = window_size
33
+
34
+ self.drop = nn.Dropout(p_dropout)
35
+ self.attn_layers = nn.ModuleList()
36
+ self.norm_layers_1 = nn.ModuleList()
37
+ self.ffn_layers = nn.ModuleList()
38
+ self.norm_layers_2 = nn.ModuleList()
39
+ for i in range(self.n_layers):
40
+ self.attn_layers.append(
41
+ MultiHeadAttention(
42
+ hidden_channels,
43
+ hidden_channels,
44
+ n_heads,
45
+ p_dropout=p_dropout,
46
+ window_size=window_size,
47
+ )
48
+ )
49
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
50
+ self.ffn_layers.append(
51
+ FFN(
52
+ hidden_channels,
53
+ hidden_channels,
54
+ filter_channels,
55
+ kernel_size,
56
+ p_dropout=p_dropout,
57
+ )
58
+ )
59
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
60
+
61
+ def forward(self, x, x_mask):
62
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
63
+ x = x * x_mask
64
+ for i in range(self.n_layers):
65
+ y = self.attn_layers[i](x, x, attn_mask)
66
+ y = self.drop(y)
67
+ x = self.norm_layers_1[i](x + y)
68
+
69
+ y = self.ffn_layers[i](x, x_mask)
70
+ y = self.drop(y)
71
+ x = self.norm_layers_2[i](x + y)
72
+ x = x * x_mask
73
+ return x
74
+
75
+
76
+ class Decoder(nn.Module):
77
+ def __init__(
78
+ self,
79
+ hidden_channels,
80
+ filter_channels,
81
+ n_heads,
82
+ n_layers,
83
+ kernel_size=1,
84
+ p_dropout=0.0,
85
+ proximal_bias=False,
86
+ proximal_init=True,
87
+ **kwargs
88
+ ):
89
+ super().__init__()
90
+ self.hidden_channels = hidden_channels
91
+ self.filter_channels = filter_channels
92
+ self.n_heads = n_heads
93
+ self.n_layers = n_layers
94
+ self.kernel_size = kernel_size
95
+ self.p_dropout = p_dropout
96
+ self.proximal_bias = proximal_bias
97
+ self.proximal_init = proximal_init
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.self_attn_layers = nn.ModuleList()
101
+ self.norm_layers_0 = nn.ModuleList()
102
+ self.encdec_attn_layers = nn.ModuleList()
103
+ self.norm_layers_1 = nn.ModuleList()
104
+ self.ffn_layers = nn.ModuleList()
105
+ self.norm_layers_2 = nn.ModuleList()
106
+ for i in range(self.n_layers):
107
+ self.self_attn_layers.append(
108
+ MultiHeadAttention(
109
+ hidden_channels,
110
+ hidden_channels,
111
+ n_heads,
112
+ p_dropout=p_dropout,
113
+ proximal_bias=proximal_bias,
114
+ proximal_init=proximal_init,
115
+ )
116
+ )
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(
119
+ MultiHeadAttention(
120
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
121
+ )
122
+ )
123
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
124
+ self.ffn_layers.append(
125
+ FFN(
126
+ hidden_channels,
127
+ hidden_channels,
128
+ filter_channels,
129
+ kernel_size,
130
+ p_dropout=p_dropout,
131
+ causal=True,
132
+ )
133
+ )
134
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
135
+
136
+ def forward(self, x, x_mask, h, h_mask):
137
+ """
138
+ x: decoder input
139
+ h: encoder output
140
+ """
141
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
142
+ device=x.device, dtype=x.dtype
143
+ )
144
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
145
+ x = x * x_mask
146
+ for i in range(self.n_layers):
147
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
148
+ y = self.drop(y)
149
+ x = self.norm_layers_0[i](x + y)
150
+
151
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
152
+ y = self.drop(y)
153
+ x = self.norm_layers_1[i](x + y)
154
+
155
+ y = self.ffn_layers[i](x, x_mask)
156
+ y = self.drop(y)
157
+ x = self.norm_layers_2[i](x + y)
158
+ x = x * x_mask
159
+ return x
160
+
161
+
162
+ class MultiHeadAttention(nn.Module):
163
+ def __init__(
164
+ self,
165
+ channels,
166
+ out_channels,
167
+ n_heads,
168
+ p_dropout=0.0,
169
+ window_size=None,
170
+ heads_share=True,
171
+ block_length=None,
172
+ proximal_bias=False,
173
+ proximal_init=False,
174
+ ):
175
+ super().__init__()
176
+ assert channels % n_heads == 0
177
+
178
+ self.channels = channels
179
+ self.out_channels = out_channels
180
+ self.n_heads = n_heads
181
+ self.p_dropout = p_dropout
182
+ self.window_size = window_size
183
+ self.heads_share = heads_share
184
+ self.block_length = block_length
185
+ self.proximal_bias = proximal_bias
186
+ self.proximal_init = proximal_init
187
+ self.attn = None
188
+
189
+ self.k_channels = channels // n_heads
190
+ self.conv_q = nn.Conv1d(channels, channels, 1)
191
+ self.conv_k = nn.Conv1d(channels, channels, 1)
192
+ self.conv_v = nn.Conv1d(channels, channels, 1)
193
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
194
+ self.drop = nn.Dropout(p_dropout)
195
+
196
+ if window_size is not None:
197
+ n_heads_rel = 1 if heads_share else n_heads
198
+ rel_stddev = self.k_channels**-0.5
199
+ self.emb_rel_k = nn.Parameter(
200
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
201
+ * rel_stddev
202
+ )
203
+ self.emb_rel_v = nn.Parameter(
204
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
205
+ * rel_stddev
206
+ )
207
+
208
+ nn.init.xavier_uniform_(self.conv_q.weight)
209
+ nn.init.xavier_uniform_(self.conv_k.weight)
210
+ nn.init.xavier_uniform_(self.conv_v.weight)
211
+ if proximal_init:
212
+ with torch.no_grad():
213
+ self.conv_k.weight.copy_(self.conv_q.weight)
214
+ self.conv_k.bias.copy_(self.conv_q.bias)
215
+
216
+ def forward(self, x, c, attn_mask=None):
217
+ q = self.conv_q(x)
218
+ k = self.conv_k(c)
219
+ v = self.conv_v(c)
220
+
221
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
222
+
223
+ x = self.conv_o(x)
224
+ return x
225
+
226
+ def attention(self, query, key, value, mask=None):
227
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
228
+ b, d, t_s, t_t = (*key.size(), query.size(2))
229
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
230
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
231
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
232
+
233
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
234
+ if self.window_size is not None:
235
+ assert (
236
+ t_s == t_t
237
+ ), "Relative attention is only available for self-attention."
238
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
239
+ rel_logits = self._matmul_with_relative_keys(
240
+ query / math.sqrt(self.k_channels), key_relative_embeddings
241
+ )
242
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
243
+ scores = scores + scores_local
244
+ if self.proximal_bias:
245
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
246
+ scores = scores + self._attention_bias_proximal(t_s).to(
247
+ device=scores.device, dtype=scores.dtype
248
+ )
249
+ if mask is not None:
250
+ scores = scores.masked_fill(mask == 0, -1e4)
251
+ if self.block_length is not None:
252
+ assert (
253
+ t_s == t_t
254
+ ), "Local attention is only available for self-attention."
255
+ block_mask = (
256
+ torch.ones_like(scores)
257
+ .triu(-self.block_length)
258
+ .tril(self.block_length)
259
+ )
260
+ scores = scores.masked_fill(block_mask == 0, -1e4)
261
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
262
+ p_attn = self.drop(p_attn)
263
+ output = torch.matmul(p_attn, value)
264
+ if self.window_size is not None:
265
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
266
+ value_relative_embeddings = self._get_relative_embeddings(
267
+ self.emb_rel_v, t_s
268
+ )
269
+ output = output + self._matmul_with_relative_values(
270
+ relative_weights, value_relative_embeddings
271
+ )
272
+ output = (
273
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
274
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
275
+ return output, p_attn
276
+
277
+ def _matmul_with_relative_values(self, x, y):
278
+ """
279
+ x: [b, h, l, m]
280
+ y: [h or 1, m, d]
281
+ ret: [b, h, l, d]
282
+ """
283
+ ret = torch.matmul(x, y.unsqueeze(0))
284
+ return ret
285
+
286
+ def _matmul_with_relative_keys(self, x, y):
287
+ """
288
+ x: [b, h, l, d]
289
+ y: [h or 1, m, d]
290
+ ret: [b, h, l, m]
291
+ """
292
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
293
+ return ret
294
+
295
+ def _get_relative_embeddings(self, relative_embeddings, length):
296
+ max_relative_position = 2 * self.window_size + 1
297
+ # Pad first before slice to avoid using cond ops.
298
+ pad_length = max(length - (self.window_size + 1), 0)
299
+ slice_start_position = max((self.window_size + 1) - length, 0)
300
+ slice_end_position = slice_start_position + 2 * length - 1
301
+ if pad_length > 0:
302
+ padded_relative_embeddings = F.pad(
303
+ relative_embeddings,
304
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
305
+ )
306
+ else:
307
+ padded_relative_embeddings = relative_embeddings
308
+ used_relative_embeddings = padded_relative_embeddings[
309
+ :, slice_start_position:slice_end_position
310
+ ]
311
+ return used_relative_embeddings
312
+
313
+ def _relative_position_to_absolute_position(self, x):
314
+ """
315
+ x: [b, h, l, 2*l-1]
316
+ ret: [b, h, l, l]
317
+ """
318
+ batch, heads, length, _ = x.size()
319
+ # Concat columns of pad to shift from relative to absolute indexing.
320
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
321
+
322
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
323
+ x_flat = x.view([batch, heads, length * 2 * length])
324
+ x_flat = F.pad(
325
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
326
+ )
327
+
328
+ # Reshape and slice out the padded elements.
329
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
330
+ :, :, :length, length - 1 :
331
+ ]
332
+ return x_final
333
+
334
+ def _absolute_position_to_relative_position(self, x):
335
+ """
336
+ x: [b, h, l, l]
337
+ ret: [b, h, l, 2*l-1]
338
+ """
339
+ batch, heads, length, _ = x.size()
340
+ # padd along column
341
+ x = F.pad(
342
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
343
+ )
344
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
345
+ # add 0's in the beginning that will skew the elements after reshape
346
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
347
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
348
+ return x_final
349
+
350
+ def _attention_bias_proximal(self, length):
351
+ """Bias for self-attention to encourage attention to close positions.
352
+ Args:
353
+ length: an integer scalar.
354
+ Returns:
355
+ a Tensor with shape [1, 1, length, length]
356
+ """
357
+ r = torch.arange(length, dtype=torch.float32)
358
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
359
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
360
+
361
+
362
+ class FFN(nn.Module):
363
+ def __init__(
364
+ self,
365
+ in_channels,
366
+ out_channels,
367
+ filter_channels,
368
+ kernel_size,
369
+ p_dropout=0.0,
370
+ activation=None,
371
+ causal=False,
372
+ ):
373
+ super().__init__()
374
+ self.in_channels = in_channels
375
+ self.out_channels = out_channels
376
+ self.filter_channels = filter_channels
377
+ self.kernel_size = kernel_size
378
+ self.p_dropout = p_dropout
379
+ self.activation = activation
380
+ self.causal = causal
381
+
382
+ if causal:
383
+ self.padding = self._causal_padding
384
+ else:
385
+ self.padding = self._same_padding
386
+
387
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
388
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
389
+ self.drop = nn.Dropout(p_dropout)
390
+
391
+ def forward(self, x, x_mask):
392
+ x = self.conv_1(self.padding(x * x_mask))
393
+ if self.activation == "gelu":
394
+ x = x * torch.sigmoid(1.702 * x)
395
+ else:
396
+ x = torch.relu(x)
397
+ x = self.drop(x)
398
+ x = self.conv_2(self.padding(x * x_mask))
399
+ return x * x_mask
400
+
401
+ def _causal_padding(self, x):
402
+ if self.kernel_size == 1:
403
+ return x
404
+ pad_l = self.kernel_size - 1
405
+ pad_r = 0
406
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
407
+ x = F.pad(x, commons.convert_pad_shape(padding))
408
+ return x
409
+
410
+ def _same_padding(self, x):
411
+ if self.kernel_size == 1:
412
+ return x
413
+ pad_l = (self.kernel_size - 1) // 2
414
+ pad_r = self.kernel_size // 2
415
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
416
+ x = F.pad(x, commons.convert_pad_shape(padding))
417
+ return x
lib/infer_pack/commons.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size * dilation - dilation) / 2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
25
+ """KL(P||Q)"""
26
+ kl = (logs_q - logs_p) - 0.5
27
+ kl += (
28
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
29
+ )
30
+ return kl
31
+
32
+
33
+ def rand_gumbel(shape):
34
+ """Sample from the Gumbel distribution, protect from overflows."""
35
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
36
+ return -torch.log(-torch.log(uniform_samples))
37
+
38
+
39
+ def rand_gumbel_like(x):
40
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
41
+ return g
42
+
43
+
44
+ def slice_segments(x, ids_str, segment_size=4):
45
+ ret = torch.zeros_like(x[:, :, :segment_size])
46
+ for i in range(x.size(0)):
47
+ idx_str = ids_str[i]
48
+ idx_end = idx_str + segment_size
49
+ ret[i] = x[i, :, idx_str:idx_end]
50
+ return ret
51
+
52
+
53
+ def slice_segments2(x, ids_str, segment_size=4):
54
+ ret = torch.zeros_like(x[:, :segment_size])
55
+ for i in range(x.size(0)):
56
+ idx_str = ids_str[i]
57
+ idx_end = idx_str + segment_size
58
+ ret[i] = x[i, idx_str:idx_end]
59
+ return ret
60
+
61
+
62
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
63
+ b, d, t = x.size()
64
+ if x_lengths is None:
65
+ x_lengths = t
66
+ ids_str_max = x_lengths - segment_size + 1
67
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
68
+ ret = slice_segments(x, ids_str, segment_size)
69
+ return ret, ids_str
70
+
71
+
72
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
73
+ position = torch.arange(length, dtype=torch.float)
74
+ num_timescales = channels // 2
75
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
76
+ num_timescales - 1
77
+ )
78
+ inv_timescales = min_timescale * torch.exp(
79
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
80
+ )
81
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
82
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
83
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
84
+ signal = signal.view(1, channels, length)
85
+ return signal
86
+
87
+
88
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
89
+ b, channels, length = x.size()
90
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
91
+ return x + signal.to(dtype=x.dtype, device=x.device)
92
+
93
+
94
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
95
+ b, channels, length = x.size()
96
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
97
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
98
+
99
+
100
+ def subsequent_mask(length):
101
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
102
+ return mask
103
+
104
+
105
+ @torch.jit.script
106
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
107
+ n_channels_int = n_channels[0]
108
+ in_act = input_a + input_b
109
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
110
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
111
+ acts = t_act * s_act
112
+ return acts
113
+
114
+
115
+ def convert_pad_shape(pad_shape):
116
+ l = pad_shape[::-1]
117
+ pad_shape = [item for sublist in l for item in sublist]
118
+ return pad_shape
119
+
120
+
121
+ def shift_1d(x):
122
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
123
+ return x
124
+
125
+
126
+ def sequence_mask(length, max_length=None):
127
+ if max_length is None:
128
+ max_length = length.max()
129
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
130
+ return x.unsqueeze(0) < length.unsqueeze(1)
131
+
132
+
133
+ def generate_path(duration, mask):
134
+ """
135
+ duration: [b, 1, t_x]
136
+ mask: [b, 1, t_y, t_x]
137
+ """
138
+ device = duration.device
139
+
140
+ b, _, t_y, t_x = mask.shape
141
+ cum_duration = torch.cumsum(duration, -1)
142
+
143
+ cum_duration_flat = cum_duration.view(b * t_x)
144
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
145
+ path = path.view(b, t_x, t_y)
146
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
147
+ path = path.unsqueeze(1).transpose(2, 3) * mask
148
+ return path
149
+
150
+
151
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
152
+ if isinstance(parameters, torch.Tensor):
153
+ parameters = [parameters]
154
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
155
+ norm_type = float(norm_type)
156
+ if clip_value is not None:
157
+ clip_value = float(clip_value)
158
+
159
+ total_norm = 0
160
+ for p in parameters:
161
+ param_norm = p.grad.data.norm(norm_type)
162
+ total_norm += param_norm.item() ** norm_type
163
+ if clip_value is not None:
164
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
165
+ total_norm = total_norm ** (1.0 / norm_type)
166
+ return total_norm
lib/infer_pack/models.py ADDED
@@ -0,0 +1,1142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from lib.infer_pack import modules
7
+ from lib.infer_pack import attentions
8
+ from lib.infer_pack import commons
9
+ from lib.infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from lib.infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from lib.infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder768(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(768, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ stats = self.proj(x) * x_mask
106
+
107
+ m, logs = torch.split(stats, self.out_channels, dim=1)
108
+ return m, logs, x_mask
109
+
110
+
111
+ class ResidualCouplingBlock(nn.Module):
112
+ def __init__(
113
+ self,
114
+ channels,
115
+ hidden_channels,
116
+ kernel_size,
117
+ dilation_rate,
118
+ n_layers,
119
+ n_flows=4,
120
+ gin_channels=0,
121
+ ):
122
+ super().__init__()
123
+ self.channels = channels
124
+ self.hidden_channels = hidden_channels
125
+ self.kernel_size = kernel_size
126
+ self.dilation_rate = dilation_rate
127
+ self.n_layers = n_layers
128
+ self.n_flows = n_flows
129
+ self.gin_channels = gin_channels
130
+
131
+ self.flows = nn.ModuleList()
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.ResidualCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=gin_channels,
141
+ mean_only=True,
142
+ )
143
+ )
144
+ self.flows.append(modules.Flip())
145
+
146
+ def forward(self, x, x_mask, g=None, reverse=False):
147
+ if not reverse:
148
+ for flow in self.flows:
149
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
+ else:
151
+ for flow in reversed(self.flows):
152
+ x = flow(x, x_mask, g=g, reverse=reverse)
153
+ return x
154
+
155
+ def remove_weight_norm(self):
156
+ for i in range(self.n_flows):
157
+ self.flows[i * 2].remove_weight_norm()
158
+
159
+
160
+ class PosteriorEncoder(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ hidden_channels,
166
+ kernel_size,
167
+ dilation_rate,
168
+ n_layers,
169
+ gin_channels=0,
170
+ ):
171
+ super().__init__()
172
+ self.in_channels = in_channels
173
+ self.out_channels = out_channels
174
+ self.hidden_channels = hidden_channels
175
+ self.kernel_size = kernel_size
176
+ self.dilation_rate = dilation_rate
177
+ self.n_layers = n_layers
178
+ self.gin_channels = gin_channels
179
+
180
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
+ self.enc = modules.WN(
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ gin_channels=gin_channels,
187
+ )
188
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
+
190
+ def forward(self, x, x_lengths, g=None):
191
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
+ x.dtype
193
+ )
194
+ x = self.pre(x) * x_mask
195
+ x = self.enc(x, x_mask, g=g)
196
+ stats = self.proj(x) * x_mask
197
+ m, logs = torch.split(stats, self.out_channels, dim=1)
198
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
+ return z, m, logs, x_mask
200
+
201
+ def remove_weight_norm(self):
202
+ self.enc.remove_weight_norm()
203
+
204
+
205
+ class Generator(torch.nn.Module):
206
+ def __init__(
207
+ self,
208
+ initial_channel,
209
+ resblock,
210
+ resblock_kernel_sizes,
211
+ resblock_dilation_sizes,
212
+ upsample_rates,
213
+ upsample_initial_channel,
214
+ upsample_kernel_sizes,
215
+ gin_channels=0,
216
+ ):
217
+ super(Generator, self).__init__()
218
+ self.num_kernels = len(resblock_kernel_sizes)
219
+ self.num_upsamples = len(upsample_rates)
220
+ self.conv_pre = Conv1d(
221
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
222
+ )
223
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
+
225
+ self.ups = nn.ModuleList()
226
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
+ self.ups.append(
228
+ weight_norm(
229
+ ConvTranspose1d(
230
+ upsample_initial_channel // (2**i),
231
+ upsample_initial_channel // (2 ** (i + 1)),
232
+ k,
233
+ u,
234
+ padding=(k - u) // 2,
235
+ )
236
+ )
237
+ )
238
+
239
+ self.resblocks = nn.ModuleList()
240
+ for i in range(len(self.ups)):
241
+ ch = upsample_initial_channel // (2 ** (i + 1))
242
+ for j, (k, d) in enumerate(
243
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
+ ):
245
+ self.resblocks.append(resblock(ch, k, d))
246
+
247
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
+ self.ups.apply(init_weights)
249
+
250
+ if gin_channels != 0:
251
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
+
253
+ def forward(self, x, g=None):
254
+ x = self.conv_pre(x)
255
+ if g is not None:
256
+ x = x + self.cond(g)
257
+
258
+ for i in range(self.num_upsamples):
259
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
+ x = self.ups[i](x)
261
+ xs = None
262
+ for j in range(self.num_kernels):
263
+ if xs is None:
264
+ xs = self.resblocks[i * self.num_kernels + j](x)
265
+ else:
266
+ xs += self.resblocks[i * self.num_kernels + j](x)
267
+ x = xs / self.num_kernels
268
+ x = F.leaky_relu(x)
269
+ x = self.conv_post(x)
270
+ x = torch.tanh(x)
271
+
272
+ return x
273
+
274
+ def remove_weight_norm(self):
275
+ for l in self.ups:
276
+ remove_weight_norm(l)
277
+ for l in self.resblocks:
278
+ l.remove_weight_norm()
279
+
280
+
281
+ class SineGen(torch.nn.Module):
282
+ """Definition of sine generator
283
+ SineGen(samp_rate, harmonic_num = 0,
284
+ sine_amp = 0.1, noise_std = 0.003,
285
+ voiced_threshold = 0,
286
+ flag_for_pulse=False)
287
+ samp_rate: sampling rate in Hz
288
+ harmonic_num: number of harmonic overtones (default 0)
289
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
290
+ noise_std: std of Gaussian noise (default 0.003)
291
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
+ Note: when flag_for_pulse is True, the first time step of a voiced
294
+ segment is always sin(np.pi) or cos(0)
295
+ """
296
+
297
+ def __init__(
298
+ self,
299
+ samp_rate,
300
+ harmonic_num=0,
301
+ sine_amp=0.1,
302
+ noise_std=0.003,
303
+ voiced_threshold=0,
304
+ flag_for_pulse=False,
305
+ ):
306
+ super(SineGen, self).__init__()
307
+ self.sine_amp = sine_amp
308
+ self.noise_std = noise_std
309
+ self.harmonic_num = harmonic_num
310
+ self.dim = self.harmonic_num + 1
311
+ self.sampling_rate = samp_rate
312
+ self.voiced_threshold = voiced_threshold
313
+
314
+ def _f02uv(self, f0):
315
+ # generate uv signal
316
+ uv = torch.ones_like(f0)
317
+ uv = uv * (f0 > self.voiced_threshold)
318
+ return uv
319
+
320
+ def forward(self, f0, upp):
321
+ """sine_tensor, uv = forward(f0)
322
+ input F0: tensor(batchsize=1, length, dim=1)
323
+ f0 for unvoiced steps should be 0
324
+ output sine_tensor: tensor(batchsize=1, length, dim)
325
+ output uv: tensor(batchsize=1, length, 1)
326
+ """
327
+ with torch.no_grad():
328
+ f0 = f0[:, None].transpose(1, 2)
329
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
+ # fundamental component
331
+ f0_buf[:, :, 0] = f0[:, :, 0]
332
+ for idx in np.arange(self.harmonic_num):
333
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
+ idx + 2
335
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
+ rand_ini = torch.rand(
338
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
+ )
340
+ rand_ini[:, 0] = 0
341
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
+ tmp_over_one *= upp
344
+ tmp_over_one = F.interpolate(
345
+ tmp_over_one.transpose(2, 1),
346
+ scale_factor=upp,
347
+ mode="linear",
348
+ align_corners=True,
349
+ ).transpose(2, 1)
350
+ rad_values = F.interpolate(
351
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
+ ).transpose(
353
+ 2, 1
354
+ ) #######
355
+ tmp_over_one %= 1
356
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
+ cumsum_shift = torch.zeros_like(rad_values)
358
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
+ sine_waves = torch.sin(
360
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
+ )
362
+ sine_waves = sine_waves * self.sine_amp
363
+ uv = self._f02uv(f0)
364
+ uv = F.interpolate(
365
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
+ ).transpose(2, 1)
367
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
+ noise = noise_amp * torch.randn_like(sine_waves)
369
+ sine_waves = sine_waves * uv + noise
370
+ return sine_waves, uv, noise
371
+
372
+
373
+ class SourceModuleHnNSF(torch.nn.Module):
374
+ """SourceModule for hn-nsf
375
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
+ add_noise_std=0.003, voiced_threshod=0)
377
+ sampling_rate: sampling_rate in Hz
378
+ harmonic_num: number of harmonic above F0 (default: 0)
379
+ sine_amp: amplitude of sine source signal (default: 0.1)
380
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
381
+ note that amplitude of noise in unvoiced is decided
382
+ by sine_amp
383
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
384
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
+ F0_sampled (batchsize, length, 1)
386
+ Sine_source (batchsize, length, 1)
387
+ noise_source (batchsize, length 1)
388
+ uv (batchsize, length, 1)
389
+ """
390
+
391
+ def __init__(
392
+ self,
393
+ sampling_rate,
394
+ harmonic_num=0,
395
+ sine_amp=0.1,
396
+ add_noise_std=0.003,
397
+ voiced_threshod=0,
398
+ is_half=True,
399
+ ):
400
+ super(SourceModuleHnNSF, self).__init__()
401
+
402
+ self.sine_amp = sine_amp
403
+ self.noise_std = add_noise_std
404
+ self.is_half = is_half
405
+ # to produce sine waveforms
406
+ self.l_sin_gen = SineGen(
407
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
+ )
409
+
410
+ # to merge source harmonics into a single excitation
411
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
+ self.l_tanh = torch.nn.Tanh()
413
+
414
+ def forward(self, x, upp=None):
415
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
+ if self.is_half:
417
+ sine_wavs = sine_wavs.half()
418
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
+ return sine_merge, None, None # noise, uv
420
+
421
+
422
+ class GeneratorNSF(torch.nn.Module):
423
+ def __init__(
424
+ self,
425
+ initial_channel,
426
+ resblock,
427
+ resblock_kernel_sizes,
428
+ resblock_dilation_sizes,
429
+ upsample_rates,
430
+ upsample_initial_channel,
431
+ upsample_kernel_sizes,
432
+ gin_channels,
433
+ sr,
434
+ is_half=False,
435
+ ):
436
+ super(GeneratorNSF, self).__init__()
437
+ self.num_kernels = len(resblock_kernel_sizes)
438
+ self.num_upsamples = len(upsample_rates)
439
+
440
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
+ self.m_source = SourceModuleHnNSF(
442
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
443
+ )
444
+ self.noise_convs = nn.ModuleList()
445
+ self.conv_pre = Conv1d(
446
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
447
+ )
448
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
+
450
+ self.ups = nn.ModuleList()
451
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
453
+ self.ups.append(
454
+ weight_norm(
455
+ ConvTranspose1d(
456
+ upsample_initial_channel // (2**i),
457
+ upsample_initial_channel // (2 ** (i + 1)),
458
+ k,
459
+ u,
460
+ padding=(k - u) // 2,
461
+ )
462
+ )
463
+ )
464
+ if i + 1 < len(upsample_rates):
465
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
466
+ self.noise_convs.append(
467
+ Conv1d(
468
+ 1,
469
+ c_cur,
470
+ kernel_size=stride_f0 * 2,
471
+ stride=stride_f0,
472
+ padding=stride_f0 // 2,
473
+ )
474
+ )
475
+ else:
476
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
+
478
+ self.resblocks = nn.ModuleList()
479
+ for i in range(len(self.ups)):
480
+ ch = upsample_initial_channel // (2 ** (i + 1))
481
+ for j, (k, d) in enumerate(
482
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
+ ):
484
+ self.resblocks.append(resblock(ch, k, d))
485
+
486
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
+ self.ups.apply(init_weights)
488
+
489
+ if gin_channels != 0:
490
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
+
492
+ self.upp = np.prod(upsample_rates)
493
+
494
+ def forward(self, x, f0, g=None):
495
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
496
+ har_source = har_source.transpose(1, 2)
497
+ x = self.conv_pre(x)
498
+ if g is not None:
499
+ x = x + self.cond(g)
500
+
501
+ for i in range(self.num_upsamples):
502
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
+ x = self.ups[i](x)
504
+ x_source = self.noise_convs[i](har_source)
505
+ x = x + x_source
506
+ xs = None
507
+ for j in range(self.num_kernels):
508
+ if xs is None:
509
+ xs = self.resblocks[i * self.num_kernels + j](x)
510
+ else:
511
+ xs += self.resblocks[i * self.num_kernels + j](x)
512
+ x = xs / self.num_kernels
513
+ x = F.leaky_relu(x)
514
+ x = self.conv_post(x)
515
+ x = torch.tanh(x)
516
+ return x
517
+
518
+ def remove_weight_norm(self):
519
+ for l in self.ups:
520
+ remove_weight_norm(l)
521
+ for l in self.resblocks:
522
+ l.remove_weight_norm()
523
+
524
+
525
+ sr2sr = {
526
+ "32k": 32000,
527
+ "40k": 40000,
528
+ "48k": 48000,
529
+ }
530
+
531
+
532
+ class SynthesizerTrnMs256NSFsid(nn.Module):
533
+ def __init__(
534
+ self,
535
+ spec_channels,
536
+ segment_size,
537
+ inter_channels,
538
+ hidden_channels,
539
+ filter_channels,
540
+ n_heads,
541
+ n_layers,
542
+ kernel_size,
543
+ p_dropout,
544
+ resblock,
545
+ resblock_kernel_sizes,
546
+ resblock_dilation_sizes,
547
+ upsample_rates,
548
+ upsample_initial_channel,
549
+ upsample_kernel_sizes,
550
+ spk_embed_dim,
551
+ gin_channels,
552
+ sr,
553
+ **kwargs
554
+ ):
555
+ super().__init__()
556
+ if type(sr) == type("strr"):
557
+ sr = sr2sr[sr]
558
+ self.spec_channels = spec_channels
559
+ self.inter_channels = inter_channels
560
+ self.hidden_channels = hidden_channels
561
+ self.filter_channels = filter_channels
562
+ self.n_heads = n_heads
563
+ self.n_layers = n_layers
564
+ self.kernel_size = kernel_size
565
+ self.p_dropout = p_dropout
566
+ self.resblock = resblock
567
+ self.resblock_kernel_sizes = resblock_kernel_sizes
568
+ self.resblock_dilation_sizes = resblock_dilation_sizes
569
+ self.upsample_rates = upsample_rates
570
+ self.upsample_initial_channel = upsample_initial_channel
571
+ self.upsample_kernel_sizes = upsample_kernel_sizes
572
+ self.segment_size = segment_size
573
+ self.gin_channels = gin_channels
574
+ # self.hop_length = hop_length#
575
+ self.spk_embed_dim = spk_embed_dim
576
+ self.enc_p = TextEncoder256(
577
+ inter_channels,
578
+ hidden_channels,
579
+ filter_channels,
580
+ n_heads,
581
+ n_layers,
582
+ kernel_size,
583
+ p_dropout,
584
+ )
585
+ self.dec = GeneratorNSF(
586
+ inter_channels,
587
+ resblock,
588
+ resblock_kernel_sizes,
589
+ resblock_dilation_sizes,
590
+ upsample_rates,
591
+ upsample_initial_channel,
592
+ upsample_kernel_sizes,
593
+ gin_channels=gin_channels,
594
+ sr=sr,
595
+ is_half=kwargs["is_half"],
596
+ )
597
+ self.enc_q = PosteriorEncoder(
598
+ spec_channels,
599
+ inter_channels,
600
+ hidden_channels,
601
+ 5,
602
+ 1,
603
+ 16,
604
+ gin_channels=gin_channels,
605
+ )
606
+ self.flow = ResidualCouplingBlock(
607
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
608
+ )
609
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
610
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
611
+
612
+ def remove_weight_norm(self):
613
+ self.dec.remove_weight_norm()
614
+ self.flow.remove_weight_norm()
615
+ self.enc_q.remove_weight_norm()
616
+
617
+ def forward(
618
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
619
+ ): # 这里ds是id,[bs,1]
620
+ # print(1,pitch.shape)#[bs,t]
621
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
622
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
623
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
624
+ z_p = self.flow(z, y_mask, g=g)
625
+ z_slice, ids_slice = commons.rand_slice_segments(
626
+ z, y_lengths, self.segment_size
627
+ )
628
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
629
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
630
+ # print(-2,pitchf.shape,z_slice.shape)
631
+ o = self.dec(z_slice, pitchf, g=g)
632
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
633
+
634
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
635
+ g = self.emb_g(sid).unsqueeze(-1)
636
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
638
+ if rate:
639
+ head = int(z_p.shape[2] * rate)
640
+ z_p = z_p[:, :, -head:]
641
+ x_mask = x_mask[:, :, -head:]
642
+ nsff0 = nsff0[:, -head:]
643
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
644
+ o = self.dec(z * x_mask, nsff0, g=g)
645
+ return o, x_mask, (z, z_p, m_p, logs_p)
646
+
647
+
648
+ class SynthesizerTrnMs768NSFsid(nn.Module):
649
+ def __init__(
650
+ self,
651
+ spec_channels,
652
+ segment_size,
653
+ inter_channels,
654
+ hidden_channels,
655
+ filter_channels,
656
+ n_heads,
657
+ n_layers,
658
+ kernel_size,
659
+ p_dropout,
660
+ resblock,
661
+ resblock_kernel_sizes,
662
+ resblock_dilation_sizes,
663
+ upsample_rates,
664
+ upsample_initial_channel,
665
+ upsample_kernel_sizes,
666
+ spk_embed_dim,
667
+ gin_channels,
668
+ sr,
669
+ **kwargs
670
+ ):
671
+ super().__init__()
672
+ if type(sr) == type("strr"):
673
+ sr = sr2sr[sr]
674
+ self.spec_channels = spec_channels
675
+ self.inter_channels = inter_channels
676
+ self.hidden_channels = hidden_channels
677
+ self.filter_channels = filter_channels
678
+ self.n_heads = n_heads
679
+ self.n_layers = n_layers
680
+ self.kernel_size = kernel_size
681
+ self.p_dropout = p_dropout
682
+ self.resblock = resblock
683
+ self.resblock_kernel_sizes = resblock_kernel_sizes
684
+ self.resblock_dilation_sizes = resblock_dilation_sizes
685
+ self.upsample_rates = upsample_rates
686
+ self.upsample_initial_channel = upsample_initial_channel
687
+ self.upsample_kernel_sizes = upsample_kernel_sizes
688
+ self.segment_size = segment_size
689
+ self.gin_channels = gin_channels
690
+ # self.hop_length = hop_length#
691
+ self.spk_embed_dim = spk_embed_dim
692
+ self.enc_p = TextEncoder768(
693
+ inter_channels,
694
+ hidden_channels,
695
+ filter_channels,
696
+ n_heads,
697
+ n_layers,
698
+ kernel_size,
699
+ p_dropout,
700
+ )
701
+ self.dec = GeneratorNSF(
702
+ inter_channels,
703
+ resblock,
704
+ resblock_kernel_sizes,
705
+ resblock_dilation_sizes,
706
+ upsample_rates,
707
+ upsample_initial_channel,
708
+ upsample_kernel_sizes,
709
+ gin_channels=gin_channels,
710
+ sr=sr,
711
+ is_half=kwargs["is_half"],
712
+ )
713
+ self.enc_q = PosteriorEncoder(
714
+ spec_channels,
715
+ inter_channels,
716
+ hidden_channels,
717
+ 5,
718
+ 1,
719
+ 16,
720
+ gin_channels=gin_channels,
721
+ )
722
+ self.flow = ResidualCouplingBlock(
723
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
724
+ )
725
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
726
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
727
+
728
+ def remove_weight_norm(self):
729
+ self.dec.remove_weight_norm()
730
+ self.flow.remove_weight_norm()
731
+ self.enc_q.remove_weight_norm()
732
+
733
+ def forward(
734
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
735
+ ): # 这里ds是id,[bs,1]
736
+ # print(1,pitch.shape)#[bs,t]
737
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
738
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
739
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
740
+ z_p = self.flow(z, y_mask, g=g)
741
+ z_slice, ids_slice = commons.rand_slice_segments(
742
+ z, y_lengths, self.segment_size
743
+ )
744
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
745
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
746
+ # print(-2,pitchf.shape,z_slice.shape)
747
+ o = self.dec(z_slice, pitchf, g=g)
748
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
749
+
750
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
751
+ g = self.emb_g(sid).unsqueeze(-1)
752
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
753
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
754
+ if rate:
755
+ head = int(z_p.shape[2] * rate)
756
+ z_p = z_p[:, :, -head:]
757
+ x_mask = x_mask[:, :, -head:]
758
+ nsff0 = nsff0[:, -head:]
759
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
760
+ o = self.dec(z * x_mask, nsff0, g=g)
761
+ return o, x_mask, (z, z_p, m_p, logs_p)
762
+
763
+
764
+ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
765
+ def __init__(
766
+ self,
767
+ spec_channels,
768
+ segment_size,
769
+ inter_channels,
770
+ hidden_channels,
771
+ filter_channels,
772
+ n_heads,
773
+ n_layers,
774
+ kernel_size,
775
+ p_dropout,
776
+ resblock,
777
+ resblock_kernel_sizes,
778
+ resblock_dilation_sizes,
779
+ upsample_rates,
780
+ upsample_initial_channel,
781
+ upsample_kernel_sizes,
782
+ spk_embed_dim,
783
+ gin_channels,
784
+ sr=None,
785
+ **kwargs
786
+ ):
787
+ super().__init__()
788
+ self.spec_channels = spec_channels
789
+ self.inter_channels = inter_channels
790
+ self.hidden_channels = hidden_channels
791
+ self.filter_channels = filter_channels
792
+ self.n_heads = n_heads
793
+ self.n_layers = n_layers
794
+ self.kernel_size = kernel_size
795
+ self.p_dropout = p_dropout
796
+ self.resblock = resblock
797
+ self.resblock_kernel_sizes = resblock_kernel_sizes
798
+ self.resblock_dilation_sizes = resblock_dilation_sizes
799
+ self.upsample_rates = upsample_rates
800
+ self.upsample_initial_channel = upsample_initial_channel
801
+ self.upsample_kernel_sizes = upsample_kernel_sizes
802
+ self.segment_size = segment_size
803
+ self.gin_channels = gin_channels
804
+ # self.hop_length = hop_length#
805
+ self.spk_embed_dim = spk_embed_dim
806
+ self.enc_p = TextEncoder256(
807
+ inter_channels,
808
+ hidden_channels,
809
+ filter_channels,
810
+ n_heads,
811
+ n_layers,
812
+ kernel_size,
813
+ p_dropout,
814
+ f0=False,
815
+ )
816
+ self.dec = Generator(
817
+ inter_channels,
818
+ resblock,
819
+ resblock_kernel_sizes,
820
+ resblock_dilation_sizes,
821
+ upsample_rates,
822
+ upsample_initial_channel,
823
+ upsample_kernel_sizes,
824
+ gin_channels=gin_channels,
825
+ )
826
+ self.enc_q = PosteriorEncoder(
827
+ spec_channels,
828
+ inter_channels,
829
+ hidden_channels,
830
+ 5,
831
+ 1,
832
+ 16,
833
+ gin_channels=gin_channels,
834
+ )
835
+ self.flow = ResidualCouplingBlock(
836
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
837
+ )
838
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
839
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
840
+
841
+ def remove_weight_norm(self):
842
+ self.dec.remove_weight_norm()
843
+ self.flow.remove_weight_norm()
844
+ self.enc_q.remove_weight_norm()
845
+
846
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
847
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
848
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
849
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
850
+ z_p = self.flow(z, y_mask, g=g)
851
+ z_slice, ids_slice = commons.rand_slice_segments(
852
+ z, y_lengths, self.segment_size
853
+ )
854
+ o = self.dec(z_slice, g=g)
855
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
856
+
857
+ def infer(self, phone, phone_lengths, sid, rate=None):
858
+ g = self.emb_g(sid).unsqueeze(-1)
859
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
860
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
861
+ if rate:
862
+ head = int(z_p.shape[2] * rate)
863
+ z_p = z_p[:, :, -head:]
864
+ x_mask = x_mask[:, :, -head:]
865
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
866
+ o = self.dec(z * x_mask, g=g)
867
+ return o, x_mask, (z, z_p, m_p, logs_p)
868
+
869
+
870
+ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
871
+ def __init__(
872
+ self,
873
+ spec_channels,
874
+ segment_size,
875
+ inter_channels,
876
+ hidden_channels,
877
+ filter_channels,
878
+ n_heads,
879
+ n_layers,
880
+ kernel_size,
881
+ p_dropout,
882
+ resblock,
883
+ resblock_kernel_sizes,
884
+ resblock_dilation_sizes,
885
+ upsample_rates,
886
+ upsample_initial_channel,
887
+ upsample_kernel_sizes,
888
+ spk_embed_dim,
889
+ gin_channels,
890
+ sr=None,
891
+ **kwargs
892
+ ):
893
+ super().__init__()
894
+ self.spec_channels = spec_channels
895
+ self.inter_channels = inter_channels
896
+ self.hidden_channels = hidden_channels
897
+ self.filter_channels = filter_channels
898
+ self.n_heads = n_heads
899
+ self.n_layers = n_layers
900
+ self.kernel_size = kernel_size
901
+ self.p_dropout = p_dropout
902
+ self.resblock = resblock
903
+ self.resblock_kernel_sizes = resblock_kernel_sizes
904
+ self.resblock_dilation_sizes = resblock_dilation_sizes
905
+ self.upsample_rates = upsample_rates
906
+ self.upsample_initial_channel = upsample_initial_channel
907
+ self.upsample_kernel_sizes = upsample_kernel_sizes
908
+ self.segment_size = segment_size
909
+ self.gin_channels = gin_channels
910
+ # self.hop_length = hop_length#
911
+ self.spk_embed_dim = spk_embed_dim
912
+ self.enc_p = TextEncoder768(
913
+ inter_channels,
914
+ hidden_channels,
915
+ filter_channels,
916
+ n_heads,
917
+ n_layers,
918
+ kernel_size,
919
+ p_dropout,
920
+ f0=False,
921
+ )
922
+ self.dec = Generator(
923
+ inter_channels,
924
+ resblock,
925
+ resblock_kernel_sizes,
926
+ resblock_dilation_sizes,
927
+ upsample_rates,
928
+ upsample_initial_channel,
929
+ upsample_kernel_sizes,
930
+ gin_channels=gin_channels,
931
+ )
932
+ self.enc_q = PosteriorEncoder(
933
+ spec_channels,
934
+ inter_channels,
935
+ hidden_channels,
936
+ 5,
937
+ 1,
938
+ 16,
939
+ gin_channels=gin_channels,
940
+ )
941
+ self.flow = ResidualCouplingBlock(
942
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
943
+ )
944
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
945
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
946
+
947
+ def remove_weight_norm(self):
948
+ self.dec.remove_weight_norm()
949
+ self.flow.remove_weight_norm()
950
+ self.enc_q.remove_weight_norm()
951
+
952
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
953
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
954
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
955
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
956
+ z_p = self.flow(z, y_mask, g=g)
957
+ z_slice, ids_slice = commons.rand_slice_segments(
958
+ z, y_lengths, self.segment_size
959
+ )
960
+ o = self.dec(z_slice, g=g)
961
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
962
+
963
+ def infer(self, phone, phone_lengths, sid, rate=None):
964
+ g = self.emb_g(sid).unsqueeze(-1)
965
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
966
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
967
+ if rate:
968
+ head = int(z_p.shape[2] * rate)
969
+ z_p = z_p[:, :, -head:]
970
+ x_mask = x_mask[:, :, -head:]
971
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
972
+ o = self.dec(z * x_mask, g=g)
973
+ return o, x_mask, (z, z_p, m_p, logs_p)
974
+
975
+
976
+ class MultiPeriodDiscriminator(torch.nn.Module):
977
+ def __init__(self, use_spectral_norm=False):
978
+ super(MultiPeriodDiscriminator, self).__init__()
979
+ periods = [2, 3, 5, 7, 11, 17]
980
+ # periods = [3, 5, 7, 11, 17, 23, 37]
981
+
982
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
983
+ discs = discs + [
984
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
985
+ ]
986
+ self.discriminators = nn.ModuleList(discs)
987
+
988
+ def forward(self, y, y_hat):
989
+ y_d_rs = [] #
990
+ y_d_gs = []
991
+ fmap_rs = []
992
+ fmap_gs = []
993
+ for i, d in enumerate(self.discriminators):
994
+ y_d_r, fmap_r = d(y)
995
+ y_d_g, fmap_g = d(y_hat)
996
+ # for j in range(len(fmap_r)):
997
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
998
+ y_d_rs.append(y_d_r)
999
+ y_d_gs.append(y_d_g)
1000
+ fmap_rs.append(fmap_r)
1001
+ fmap_gs.append(fmap_g)
1002
+
1003
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1004
+
1005
+
1006
+ class MultiPeriodDiscriminatorV2(torch.nn.Module):
1007
+ def __init__(self, use_spectral_norm=False):
1008
+ super(MultiPeriodDiscriminatorV2, self).__init__()
1009
+ # periods = [2, 3, 5, 7, 11, 17]
1010
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
1011
+
1012
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
1013
+ discs = discs + [
1014
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
1015
+ ]
1016
+ self.discriminators = nn.ModuleList(discs)
1017
+
1018
+ def forward(self, y, y_hat):
1019
+ y_d_rs = [] #
1020
+ y_d_gs = []
1021
+ fmap_rs = []
1022
+ fmap_gs = []
1023
+ for i, d in enumerate(self.discriminators):
1024
+ y_d_r, fmap_r = d(y)
1025
+ y_d_g, fmap_g = d(y_hat)
1026
+ # for j in range(len(fmap_r)):
1027
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
1028
+ y_d_rs.append(y_d_r)
1029
+ y_d_gs.append(y_d_g)
1030
+ fmap_rs.append(fmap_r)
1031
+ fmap_gs.append(fmap_g)
1032
+
1033
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1034
+
1035
+
1036
+ class DiscriminatorS(torch.nn.Module):
1037
+ def __init__(self, use_spectral_norm=False):
1038
+ super(DiscriminatorS, self).__init__()
1039
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1040
+ self.convs = nn.ModuleList(
1041
+ [
1042
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
1043
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
1044
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
1045
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
1046
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
1047
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
1048
+ ]
1049
+ )
1050
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
1051
+
1052
+ def forward(self, x):
1053
+ fmap = []
1054
+
1055
+ for l in self.convs:
1056
+ x = l(x)
1057
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1058
+ fmap.append(x)
1059
+ x = self.conv_post(x)
1060
+ fmap.append(x)
1061
+ x = torch.flatten(x, 1, -1)
1062
+
1063
+ return x, fmap
1064
+
1065
+
1066
+ class DiscriminatorP(torch.nn.Module):
1067
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
1068
+ super(DiscriminatorP, self).__init__()
1069
+ self.period = period
1070
+ self.use_spectral_norm = use_spectral_norm
1071
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1072
+ self.convs = nn.ModuleList(
1073
+ [
1074
+ norm_f(
1075
+ Conv2d(
1076
+ 1,
1077
+ 32,
1078
+ (kernel_size, 1),
1079
+ (stride, 1),
1080
+ padding=(get_padding(kernel_size, 1), 0),
1081
+ )
1082
+ ),
1083
+ norm_f(
1084
+ Conv2d(
1085
+ 32,
1086
+ 128,
1087
+ (kernel_size, 1),
1088
+ (stride, 1),
1089
+ padding=(get_padding(kernel_size, 1), 0),
1090
+ )
1091
+ ),
1092
+ norm_f(
1093
+ Conv2d(
1094
+ 128,
1095
+ 512,
1096
+ (kernel_size, 1),
1097
+ (stride, 1),
1098
+ padding=(get_padding(kernel_size, 1), 0),
1099
+ )
1100
+ ),
1101
+ norm_f(
1102
+ Conv2d(
1103
+ 512,
1104
+ 1024,
1105
+ (kernel_size, 1),
1106
+ (stride, 1),
1107
+ padding=(get_padding(kernel_size, 1), 0),
1108
+ )
1109
+ ),
1110
+ norm_f(
1111
+ Conv2d(
1112
+ 1024,
1113
+ 1024,
1114
+ (kernel_size, 1),
1115
+ 1,
1116
+ padding=(get_padding(kernel_size, 1), 0),
1117
+ )
1118
+ ),
1119
+ ]
1120
+ )
1121
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
1122
+
1123
+ def forward(self, x):
1124
+ fmap = []
1125
+
1126
+ # 1d to 2d
1127
+ b, c, t = x.shape
1128
+ if t % self.period != 0: # pad first
1129
+ n_pad = self.period - (t % self.period)
1130
+ x = F.pad(x, (0, n_pad), "reflect")
1131
+ t = t + n_pad
1132
+ x = x.view(b, c, t // self.period, self.period)
1133
+
1134
+ for l in self.convs:
1135
+ x = l(x)
1136
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1137
+ fmap.append(x)
1138
+ x = self.conv_post(x)
1139
+ fmap.append(x)
1140
+ x = torch.flatten(x, 1, -1)
1141
+
1142
+ return x, fmap
lib/infer_pack/models_dml.py ADDED
@@ -0,0 +1,1124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from lib.infer_pack import modules
7
+ from lib.infer_pack import attentions
8
+ from lib.infer_pack import commons
9
+ from lib.infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from lib.infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from lib.infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder768(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(768, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ stats = self.proj(x) * x_mask
106
+
107
+ m, logs = torch.split(stats, self.out_channels, dim=1)
108
+ return m, logs, x_mask
109
+
110
+
111
+ class ResidualCouplingBlock(nn.Module):
112
+ def __init__(
113
+ self,
114
+ channels,
115
+ hidden_channels,
116
+ kernel_size,
117
+ dilation_rate,
118
+ n_layers,
119
+ n_flows=4,
120
+ gin_channels=0,
121
+ ):
122
+ super().__init__()
123
+ self.channels = channels
124
+ self.hidden_channels = hidden_channels
125
+ self.kernel_size = kernel_size
126
+ self.dilation_rate = dilation_rate
127
+ self.n_layers = n_layers
128
+ self.n_flows = n_flows
129
+ self.gin_channels = gin_channels
130
+
131
+ self.flows = nn.ModuleList()
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.ResidualCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=gin_channels,
141
+ mean_only=True,
142
+ )
143
+ )
144
+ self.flows.append(modules.Flip())
145
+
146
+ def forward(self, x, x_mask, g=None, reverse=False):
147
+ if not reverse:
148
+ for flow in self.flows:
149
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
+ else:
151
+ for flow in reversed(self.flows):
152
+ x = flow(x, x_mask, g=g, reverse=reverse)
153
+ return x
154
+
155
+ def remove_weight_norm(self):
156
+ for i in range(self.n_flows):
157
+ self.flows[i * 2].remove_weight_norm()
158
+
159
+
160
+ class PosteriorEncoder(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ hidden_channels,
166
+ kernel_size,
167
+ dilation_rate,
168
+ n_layers,
169
+ gin_channels=0,
170
+ ):
171
+ super().__init__()
172
+ self.in_channels = in_channels
173
+ self.out_channels = out_channels
174
+ self.hidden_channels = hidden_channels
175
+ self.kernel_size = kernel_size
176
+ self.dilation_rate = dilation_rate
177
+ self.n_layers = n_layers
178
+ self.gin_channels = gin_channels
179
+
180
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
+ self.enc = modules.WN(
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ gin_channels=gin_channels,
187
+ )
188
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
+
190
+ def forward(self, x, x_lengths, g=None):
191
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
+ x.dtype
193
+ )
194
+ x = self.pre(x) * x_mask
195
+ x = self.enc(x, x_mask, g=g)
196
+ stats = self.proj(x) * x_mask
197
+ m, logs = torch.split(stats, self.out_channels, dim=1)
198
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
+ return z, m, logs, x_mask
200
+
201
+ def remove_weight_norm(self):
202
+ self.enc.remove_weight_norm()
203
+
204
+
205
+ class Generator(torch.nn.Module):
206
+ def __init__(
207
+ self,
208
+ initial_channel,
209
+ resblock,
210
+ resblock_kernel_sizes,
211
+ resblock_dilation_sizes,
212
+ upsample_rates,
213
+ upsample_initial_channel,
214
+ upsample_kernel_sizes,
215
+ gin_channels=0,
216
+ ):
217
+ super(Generator, self).__init__()
218
+ self.num_kernels = len(resblock_kernel_sizes)
219
+ self.num_upsamples = len(upsample_rates)
220
+ self.conv_pre = Conv1d(
221
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
222
+ )
223
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
+
225
+ self.ups = nn.ModuleList()
226
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
+ self.ups.append(
228
+ weight_norm(
229
+ ConvTranspose1d(
230
+ upsample_initial_channel // (2**i),
231
+ upsample_initial_channel // (2 ** (i + 1)),
232
+ k,
233
+ u,
234
+ padding=(k - u) // 2,
235
+ )
236
+ )
237
+ )
238
+
239
+ self.resblocks = nn.ModuleList()
240
+ for i in range(len(self.ups)):
241
+ ch = upsample_initial_channel // (2 ** (i + 1))
242
+ for j, (k, d) in enumerate(
243
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
+ ):
245
+ self.resblocks.append(resblock(ch, k, d))
246
+
247
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
+ self.ups.apply(init_weights)
249
+
250
+ if gin_channels != 0:
251
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
+
253
+ def forward(self, x, g=None):
254
+ x = self.conv_pre(x)
255
+ if g is not None:
256
+ x = x + self.cond(g)
257
+
258
+ for i in range(self.num_upsamples):
259
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
+ x = self.ups[i](x)
261
+ xs = None
262
+ for j in range(self.num_kernels):
263
+ if xs is None:
264
+ xs = self.resblocks[i * self.num_kernels + j](x)
265
+ else:
266
+ xs += self.resblocks[i * self.num_kernels + j](x)
267
+ x = xs / self.num_kernels
268
+ x = F.leaky_relu(x)
269
+ x = self.conv_post(x)
270
+ x = torch.tanh(x)
271
+
272
+ return x
273
+
274
+ def remove_weight_norm(self):
275
+ for l in self.ups:
276
+ remove_weight_norm(l)
277
+ for l in self.resblocks:
278
+ l.remove_weight_norm()
279
+
280
+
281
+ class SineGen(torch.nn.Module):
282
+ """Definition of sine generator
283
+ SineGen(samp_rate, harmonic_num = 0,
284
+ sine_amp = 0.1, noise_std = 0.003,
285
+ voiced_threshold = 0,
286
+ flag_for_pulse=False)
287
+ samp_rate: sampling rate in Hz
288
+ harmonic_num: number of harmonic overtones (default 0)
289
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
290
+ noise_std: std of Gaussian noise (default 0.003)
291
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
+ Note: when flag_for_pulse is True, the first time step of a voiced
294
+ segment is always sin(np.pi) or cos(0)
295
+ """
296
+
297
+ def __init__(
298
+ self,
299
+ samp_rate,
300
+ harmonic_num=0,
301
+ sine_amp=0.1,
302
+ noise_std=0.003,
303
+ voiced_threshold=0,
304
+ flag_for_pulse=False,
305
+ ):
306
+ super(SineGen, self).__init__()
307
+ self.sine_amp = sine_amp
308
+ self.noise_std = noise_std
309
+ self.harmonic_num = harmonic_num
310
+ self.dim = self.harmonic_num + 1
311
+ self.sampling_rate = samp_rate
312
+ self.voiced_threshold = voiced_threshold
313
+
314
+ def _f02uv(self, f0):
315
+ # generate uv signal
316
+ uv = torch.ones_like(f0)
317
+ uv = uv * (f0 > self.voiced_threshold)
318
+ return uv.float()
319
+
320
+ def forward(self, f0, upp):
321
+ """sine_tensor, uv = forward(f0)
322
+ input F0: tensor(batchsize=1, length, dim=1)
323
+ f0 for unvoiced steps should be 0
324
+ output sine_tensor: tensor(batchsize=1, length, dim)
325
+ output uv: tensor(batchsize=1, length, 1)
326
+ """
327
+ with torch.no_grad():
328
+ f0 = f0[:, None].transpose(1, 2)
329
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
+ # fundamental component
331
+ f0_buf[:, :, 0] = f0[:, :, 0]
332
+ for idx in np.arange(self.harmonic_num):
333
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
+ idx + 2
335
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
+ rand_ini = torch.rand(
338
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
+ )
340
+ rand_ini[:, 0] = 0
341
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
+ tmp_over_one *= upp
344
+ tmp_over_one = F.interpolate(
345
+ tmp_over_one.transpose(2, 1),
346
+ scale_factor=upp,
347
+ mode="linear",
348
+ align_corners=True,
349
+ ).transpose(2, 1)
350
+ rad_values = F.interpolate(
351
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
+ ).transpose(
353
+ 2, 1
354
+ ) #######
355
+ tmp_over_one %= 1
356
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
+ cumsum_shift = torch.zeros_like(rad_values)
358
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
+ sine_waves = torch.sin(
360
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
+ )
362
+ sine_waves = sine_waves * self.sine_amp
363
+ uv = self._f02uv(f0)
364
+ uv = F.interpolate(
365
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
+ ).transpose(2, 1)
367
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
+ noise = noise_amp * torch.randn_like(sine_waves)
369
+ sine_waves = sine_waves * uv + noise
370
+ return sine_waves, uv, noise
371
+
372
+
373
+ class SourceModuleHnNSF(torch.nn.Module):
374
+ """SourceModule for hn-nsf
375
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
+ add_noise_std=0.003, voiced_threshod=0)
377
+ sampling_rate: sampling_rate in Hz
378
+ harmonic_num: number of harmonic above F0 (default: 0)
379
+ sine_amp: amplitude of sine source signal (default: 0.1)
380
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
381
+ note that amplitude of noise in unvoiced is decided
382
+ by sine_amp
383
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
384
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
+ F0_sampled (batchsize, length, 1)
386
+ Sine_source (batchsize, length, 1)
387
+ noise_source (batchsize, length 1)
388
+ uv (batchsize, length, 1)
389
+ """
390
+
391
+ def __init__(
392
+ self,
393
+ sampling_rate,
394
+ harmonic_num=0,
395
+ sine_amp=0.1,
396
+ add_noise_std=0.003,
397
+ voiced_threshod=0,
398
+ is_half=True,
399
+ ):
400
+ super(SourceModuleHnNSF, self).__init__()
401
+
402
+ self.sine_amp = sine_amp
403
+ self.noise_std = add_noise_std
404
+ self.is_half = is_half
405
+ # to produce sine waveforms
406
+ self.l_sin_gen = SineGen(
407
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
+ )
409
+
410
+ # to merge source harmonics into a single excitation
411
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
+ self.l_tanh = torch.nn.Tanh()
413
+
414
+ def forward(self, x, upp=None):
415
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
+ if self.is_half:
417
+ sine_wavs = sine_wavs.half()
418
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
+ return sine_merge, None, None # noise, uv
420
+
421
+
422
+ class GeneratorNSF(torch.nn.Module):
423
+ def __init__(
424
+ self,
425
+ initial_channel,
426
+ resblock,
427
+ resblock_kernel_sizes,
428
+ resblock_dilation_sizes,
429
+ upsample_rates,
430
+ upsample_initial_channel,
431
+ upsample_kernel_sizes,
432
+ gin_channels,
433
+ sr,
434
+ is_half=False,
435
+ ):
436
+ super(GeneratorNSF, self).__init__()
437
+ self.num_kernels = len(resblock_kernel_sizes)
438
+ self.num_upsamples = len(upsample_rates)
439
+
440
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
+ self.m_source = SourceModuleHnNSF(
442
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
443
+ )
444
+ self.noise_convs = nn.ModuleList()
445
+ self.conv_pre = Conv1d(
446
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
447
+ )
448
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
+
450
+ self.ups = nn.ModuleList()
451
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
453
+ self.ups.append(
454
+ weight_norm(
455
+ ConvTranspose1d(
456
+ upsample_initial_channel // (2**i),
457
+ upsample_initial_channel // (2 ** (i + 1)),
458
+ k,
459
+ u,
460
+ padding=(k - u) // 2,
461
+ )
462
+ )
463
+ )
464
+ if i + 1 < len(upsample_rates):
465
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
466
+ self.noise_convs.append(
467
+ Conv1d(
468
+ 1,
469
+ c_cur,
470
+ kernel_size=stride_f0 * 2,
471
+ stride=stride_f0,
472
+ padding=stride_f0 // 2,
473
+ )
474
+ )
475
+ else:
476
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
+
478
+ self.resblocks = nn.ModuleList()
479
+ for i in range(len(self.ups)):
480
+ ch = upsample_initial_channel // (2 ** (i + 1))
481
+ for j, (k, d) in enumerate(
482
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
+ ):
484
+ self.resblocks.append(resblock(ch, k, d))
485
+
486
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
+ self.ups.apply(init_weights)
488
+
489
+ if gin_channels != 0:
490
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
+
492
+ self.upp = np.prod(upsample_rates)
493
+
494
+ def forward(self, x, f0, g=None):
495
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
496
+ har_source = har_source.transpose(1, 2)
497
+ x = self.conv_pre(x)
498
+ if g is not None:
499
+ x = x + self.cond(g)
500
+
501
+ for i in range(self.num_upsamples):
502
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
+ x = self.ups[i](x)
504
+ x_source = self.noise_convs[i](har_source)
505
+ x = x + x_source
506
+ xs = None
507
+ for j in range(self.num_kernels):
508
+ if xs is None:
509
+ xs = self.resblocks[i * self.num_kernels + j](x)
510
+ else:
511
+ xs += self.resblocks[i * self.num_kernels + j](x)
512
+ x = xs / self.num_kernels
513
+ x = F.leaky_relu(x)
514
+ x = self.conv_post(x)
515
+ x = torch.tanh(x)
516
+ return x
517
+
518
+ def remove_weight_norm(self):
519
+ for l in self.ups:
520
+ remove_weight_norm(l)
521
+ for l in self.resblocks:
522
+ l.remove_weight_norm()
523
+
524
+
525
+ sr2sr = {
526
+ "32k": 32000,
527
+ "40k": 40000,
528
+ "48k": 48000,
529
+ }
530
+
531
+
532
+ class SynthesizerTrnMs256NSFsid(nn.Module):
533
+ def __init__(
534
+ self,
535
+ spec_channels,
536
+ segment_size,
537
+ inter_channels,
538
+ hidden_channels,
539
+ filter_channels,
540
+ n_heads,
541
+ n_layers,
542
+ kernel_size,
543
+ p_dropout,
544
+ resblock,
545
+ resblock_kernel_sizes,
546
+ resblock_dilation_sizes,
547
+ upsample_rates,
548
+ upsample_initial_channel,
549
+ upsample_kernel_sizes,
550
+ spk_embed_dim,
551
+ gin_channels,
552
+ sr,
553
+ **kwargs
554
+ ):
555
+ super().__init__()
556
+ if type(sr) == type("strr"):
557
+ sr = sr2sr[sr]
558
+ self.spec_channels = spec_channels
559
+ self.inter_channels = inter_channels
560
+ self.hidden_channels = hidden_channels
561
+ self.filter_channels = filter_channels
562
+ self.n_heads = n_heads
563
+ self.n_layers = n_layers
564
+ self.kernel_size = kernel_size
565
+ self.p_dropout = p_dropout
566
+ self.resblock = resblock
567
+ self.resblock_kernel_sizes = resblock_kernel_sizes
568
+ self.resblock_dilation_sizes = resblock_dilation_sizes
569
+ self.upsample_rates = upsample_rates
570
+ self.upsample_initial_channel = upsample_initial_channel
571
+ self.upsample_kernel_sizes = upsample_kernel_sizes
572
+ self.segment_size = segment_size
573
+ self.gin_channels = gin_channels
574
+ # self.hop_length = hop_length#
575
+ self.spk_embed_dim = spk_embed_dim
576
+ self.enc_p = TextEncoder256(
577
+ inter_channels,
578
+ hidden_channels,
579
+ filter_channels,
580
+ n_heads,
581
+ n_layers,
582
+ kernel_size,
583
+ p_dropout,
584
+ )
585
+ self.dec = GeneratorNSF(
586
+ inter_channels,
587
+ resblock,
588
+ resblock_kernel_sizes,
589
+ resblock_dilation_sizes,
590
+ upsample_rates,
591
+ upsample_initial_channel,
592
+ upsample_kernel_sizes,
593
+ gin_channels=gin_channels,
594
+ sr=sr,
595
+ is_half=kwargs["is_half"],
596
+ )
597
+ self.enc_q = PosteriorEncoder(
598
+ spec_channels,
599
+ inter_channels,
600
+ hidden_channels,
601
+ 5,
602
+ 1,
603
+ 16,
604
+ gin_channels=gin_channels,
605
+ )
606
+ self.flow = ResidualCouplingBlock(
607
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
608
+ )
609
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
610
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
611
+
612
+ def remove_weight_norm(self):
613
+ self.dec.remove_weight_norm()
614
+ self.flow.remove_weight_norm()
615
+ self.enc_q.remove_weight_norm()
616
+
617
+ def forward(
618
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
619
+ ): # 这里ds是id,[bs,1]
620
+ # print(1,pitch.shape)#[bs,t]
621
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
622
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
623
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
624
+ z_p = self.flow(z, y_mask, g=g)
625
+ z_slice, ids_slice = commons.rand_slice_segments(
626
+ z, y_lengths, self.segment_size
627
+ )
628
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
629
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
630
+ # print(-2,pitchf.shape,z_slice.shape)
631
+ o = self.dec(z_slice, pitchf, g=g)
632
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
633
+
634
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
635
+ g = self.emb_g(sid).unsqueeze(-1)
636
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
637
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
638
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
639
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
640
+ return o, x_mask, (z, z_p, m_p, logs_p)
641
+
642
+
643
+ class SynthesizerTrnMs768NSFsid(nn.Module):
644
+ def __init__(
645
+ self,
646
+ spec_channels,
647
+ segment_size,
648
+ inter_channels,
649
+ hidden_channels,
650
+ filter_channels,
651
+ n_heads,
652
+ n_layers,
653
+ kernel_size,
654
+ p_dropout,
655
+ resblock,
656
+ resblock_kernel_sizes,
657
+ resblock_dilation_sizes,
658
+ upsample_rates,
659
+ upsample_initial_channel,
660
+ upsample_kernel_sizes,
661
+ spk_embed_dim,
662
+ gin_channels,
663
+ sr,
664
+ **kwargs
665
+ ):
666
+ super().__init__()
667
+ if type(sr) == type("strr"):
668
+ sr = sr2sr[sr]
669
+ self.spec_channels = spec_channels
670
+ self.inter_channels = inter_channels
671
+ self.hidden_channels = hidden_channels
672
+ self.filter_channels = filter_channels
673
+ self.n_heads = n_heads
674
+ self.n_layers = n_layers
675
+ self.kernel_size = kernel_size
676
+ self.p_dropout = p_dropout
677
+ self.resblock = resblock
678
+ self.resblock_kernel_sizes = resblock_kernel_sizes
679
+ self.resblock_dilation_sizes = resblock_dilation_sizes
680
+ self.upsample_rates = upsample_rates
681
+ self.upsample_initial_channel = upsample_initial_channel
682
+ self.upsample_kernel_sizes = upsample_kernel_sizes
683
+ self.segment_size = segment_size
684
+ self.gin_channels = gin_channels
685
+ # self.hop_length = hop_length#
686
+ self.spk_embed_dim = spk_embed_dim
687
+ self.enc_p = TextEncoder768(
688
+ inter_channels,
689
+ hidden_channels,
690
+ filter_channels,
691
+ n_heads,
692
+ n_layers,
693
+ kernel_size,
694
+ p_dropout,
695
+ )
696
+ self.dec = GeneratorNSF(
697
+ inter_channels,
698
+ resblock,
699
+ resblock_kernel_sizes,
700
+ resblock_dilation_sizes,
701
+ upsample_rates,
702
+ upsample_initial_channel,
703
+ upsample_kernel_sizes,
704
+ gin_channels=gin_channels,
705
+ sr=sr,
706
+ is_half=kwargs["is_half"],
707
+ )
708
+ self.enc_q = PosteriorEncoder(
709
+ spec_channels,
710
+ inter_channels,
711
+ hidden_channels,
712
+ 5,
713
+ 1,
714
+ 16,
715
+ gin_channels=gin_channels,
716
+ )
717
+ self.flow = ResidualCouplingBlock(
718
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
719
+ )
720
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
721
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
722
+
723
+ def remove_weight_norm(self):
724
+ self.dec.remove_weight_norm()
725
+ self.flow.remove_weight_norm()
726
+ self.enc_q.remove_weight_norm()
727
+
728
+ def forward(
729
+ self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
730
+ ): # 这里ds是id,[bs,1]
731
+ # print(1,pitch.shape)#[bs,t]
732
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
733
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
734
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
735
+ z_p = self.flow(z, y_mask, g=g)
736
+ z_slice, ids_slice = commons.rand_slice_segments(
737
+ z, y_lengths, self.segment_size
738
+ )
739
+ # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
740
+ pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
741
+ # print(-2,pitchf.shape,z_slice.shape)
742
+ o = self.dec(z_slice, pitchf, g=g)
743
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
744
+
745
+ def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
746
+ g = self.emb_g(sid).unsqueeze(-1)
747
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
748
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
749
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
750
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
751
+ return o, x_mask, (z, z_p, m_p, logs_p)
752
+
753
+
754
+ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
755
+ def __init__(
756
+ self,
757
+ spec_channels,
758
+ segment_size,
759
+ inter_channels,
760
+ hidden_channels,
761
+ filter_channels,
762
+ n_heads,
763
+ n_layers,
764
+ kernel_size,
765
+ p_dropout,
766
+ resblock,
767
+ resblock_kernel_sizes,
768
+ resblock_dilation_sizes,
769
+ upsample_rates,
770
+ upsample_initial_channel,
771
+ upsample_kernel_sizes,
772
+ spk_embed_dim,
773
+ gin_channels,
774
+ sr=None,
775
+ **kwargs
776
+ ):
777
+ super().__init__()
778
+ self.spec_channels = spec_channels
779
+ self.inter_channels = inter_channels
780
+ self.hidden_channels = hidden_channels
781
+ self.filter_channels = filter_channels
782
+ self.n_heads = n_heads
783
+ self.n_layers = n_layers
784
+ self.kernel_size = kernel_size
785
+ self.p_dropout = p_dropout
786
+ self.resblock = resblock
787
+ self.resblock_kernel_sizes = resblock_kernel_sizes
788
+ self.resblock_dilation_sizes = resblock_dilation_sizes
789
+ self.upsample_rates = upsample_rates
790
+ self.upsample_initial_channel = upsample_initial_channel
791
+ self.upsample_kernel_sizes = upsample_kernel_sizes
792
+ self.segment_size = segment_size
793
+ self.gin_channels = gin_channels
794
+ # self.hop_length = hop_length#
795
+ self.spk_embed_dim = spk_embed_dim
796
+ self.enc_p = TextEncoder256(
797
+ inter_channels,
798
+ hidden_channels,
799
+ filter_channels,
800
+ n_heads,
801
+ n_layers,
802
+ kernel_size,
803
+ p_dropout,
804
+ f0=False,
805
+ )
806
+ self.dec = Generator(
807
+ inter_channels,
808
+ resblock,
809
+ resblock_kernel_sizes,
810
+ resblock_dilation_sizes,
811
+ upsample_rates,
812
+ upsample_initial_channel,
813
+ upsample_kernel_sizes,
814
+ gin_channels=gin_channels,
815
+ )
816
+ self.enc_q = PosteriorEncoder(
817
+ spec_channels,
818
+ inter_channels,
819
+ hidden_channels,
820
+ 5,
821
+ 1,
822
+ 16,
823
+ gin_channels=gin_channels,
824
+ )
825
+ self.flow = ResidualCouplingBlock(
826
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
827
+ )
828
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
829
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
830
+
831
+ def remove_weight_norm(self):
832
+ self.dec.remove_weight_norm()
833
+ self.flow.remove_weight_norm()
834
+ self.enc_q.remove_weight_norm()
835
+
836
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
837
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
838
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
839
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
840
+ z_p = self.flow(z, y_mask, g=g)
841
+ z_slice, ids_slice = commons.rand_slice_segments(
842
+ z, y_lengths, self.segment_size
843
+ )
844
+ o = self.dec(z_slice, g=g)
845
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
846
+
847
+ def infer(self, phone, phone_lengths, sid, max_len=None):
848
+ g = self.emb_g(sid).unsqueeze(-1)
849
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
850
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
851
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
852
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
853
+ return o, x_mask, (z, z_p, m_p, logs_p)
854
+
855
+
856
+ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
857
+ def __init__(
858
+ self,
859
+ spec_channels,
860
+ segment_size,
861
+ inter_channels,
862
+ hidden_channels,
863
+ filter_channels,
864
+ n_heads,
865
+ n_layers,
866
+ kernel_size,
867
+ p_dropout,
868
+ resblock,
869
+ resblock_kernel_sizes,
870
+ resblock_dilation_sizes,
871
+ upsample_rates,
872
+ upsample_initial_channel,
873
+ upsample_kernel_sizes,
874
+ spk_embed_dim,
875
+ gin_channels,
876
+ sr=None,
877
+ **kwargs
878
+ ):
879
+ super().__init__()
880
+ self.spec_channels = spec_channels
881
+ self.inter_channels = inter_channels
882
+ self.hidden_channels = hidden_channels
883
+ self.filter_channels = filter_channels
884
+ self.n_heads = n_heads
885
+ self.n_layers = n_layers
886
+ self.kernel_size = kernel_size
887
+ self.p_dropout = p_dropout
888
+ self.resblock = resblock
889
+ self.resblock_kernel_sizes = resblock_kernel_sizes
890
+ self.resblock_dilation_sizes = resblock_dilation_sizes
891
+ self.upsample_rates = upsample_rates
892
+ self.upsample_initial_channel = upsample_initial_channel
893
+ self.upsample_kernel_sizes = upsample_kernel_sizes
894
+ self.segment_size = segment_size
895
+ self.gin_channels = gin_channels
896
+ # self.hop_length = hop_length#
897
+ self.spk_embed_dim = spk_embed_dim
898
+ self.enc_p = TextEncoder768(
899
+ inter_channels,
900
+ hidden_channels,
901
+ filter_channels,
902
+ n_heads,
903
+ n_layers,
904
+ kernel_size,
905
+ p_dropout,
906
+ f0=False,
907
+ )
908
+ self.dec = Generator(
909
+ inter_channels,
910
+ resblock,
911
+ resblock_kernel_sizes,
912
+ resblock_dilation_sizes,
913
+ upsample_rates,
914
+ upsample_initial_channel,
915
+ upsample_kernel_sizes,
916
+ gin_channels=gin_channels,
917
+ )
918
+ self.enc_q = PosteriorEncoder(
919
+ spec_channels,
920
+ inter_channels,
921
+ hidden_channels,
922
+ 5,
923
+ 1,
924
+ 16,
925
+ gin_channels=gin_channels,
926
+ )
927
+ self.flow = ResidualCouplingBlock(
928
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
929
+ )
930
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
931
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
932
+
933
+ def remove_weight_norm(self):
934
+ self.dec.remove_weight_norm()
935
+ self.flow.remove_weight_norm()
936
+ self.enc_q.remove_weight_norm()
937
+
938
+ def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
939
+ g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
940
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
941
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
942
+ z_p = self.flow(z, y_mask, g=g)
943
+ z_slice, ids_slice = commons.rand_slice_segments(
944
+ z, y_lengths, self.segment_size
945
+ )
946
+ o = self.dec(z_slice, g=g)
947
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
948
+
949
+ def infer(self, phone, phone_lengths, sid, max_len=None):
950
+ g = self.emb_g(sid).unsqueeze(-1)
951
+ m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
952
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
953
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
954
+ o = self.dec((z * x_mask)[:, :, :max_len], g=g)
955
+ return o, x_mask, (z, z_p, m_p, logs_p)
956
+
957
+
958
+ class MultiPeriodDiscriminator(torch.nn.Module):
959
+ def __init__(self, use_spectral_norm=False):
960
+ super(MultiPeriodDiscriminator, self).__init__()
961
+ periods = [2, 3, 5, 7, 11, 17]
962
+ # periods = [3, 5, 7, 11, 17, 23, 37]
963
+
964
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
965
+ discs = discs + [
966
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
967
+ ]
968
+ self.discriminators = nn.ModuleList(discs)
969
+
970
+ def forward(self, y, y_hat):
971
+ y_d_rs = [] #
972
+ y_d_gs = []
973
+ fmap_rs = []
974
+ fmap_gs = []
975
+ for i, d in enumerate(self.discriminators):
976
+ y_d_r, fmap_r = d(y)
977
+ y_d_g, fmap_g = d(y_hat)
978
+ # for j in range(len(fmap_r)):
979
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
980
+ y_d_rs.append(y_d_r)
981
+ y_d_gs.append(y_d_g)
982
+ fmap_rs.append(fmap_r)
983
+ fmap_gs.append(fmap_g)
984
+
985
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
986
+
987
+
988
+ class MultiPeriodDiscriminatorV2(torch.nn.Module):
989
+ def __init__(self, use_spectral_norm=False):
990
+ super(MultiPeriodDiscriminatorV2, self).__init__()
991
+ # periods = [2, 3, 5, 7, 11, 17]
992
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
993
+
994
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
995
+ discs = discs + [
996
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
997
+ ]
998
+ self.discriminators = nn.ModuleList(discs)
999
+
1000
+ def forward(self, y, y_hat):
1001
+ y_d_rs = [] #
1002
+ y_d_gs = []
1003
+ fmap_rs = []
1004
+ fmap_gs = []
1005
+ for i, d in enumerate(self.discriminators):
1006
+ y_d_r, fmap_r = d(y)
1007
+ y_d_g, fmap_g = d(y_hat)
1008
+ # for j in range(len(fmap_r)):
1009
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
1010
+ y_d_rs.append(y_d_r)
1011
+ y_d_gs.append(y_d_g)
1012
+ fmap_rs.append(fmap_r)
1013
+ fmap_gs.append(fmap_g)
1014
+
1015
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
1016
+
1017
+
1018
+ class DiscriminatorS(torch.nn.Module):
1019
+ def __init__(self, use_spectral_norm=False):
1020
+ super(DiscriminatorS, self).__init__()
1021
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1022
+ self.convs = nn.ModuleList(
1023
+ [
1024
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
1025
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
1026
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
1027
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
1028
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
1029
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
1030
+ ]
1031
+ )
1032
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
1033
+
1034
+ def forward(self, x):
1035
+ fmap = []
1036
+
1037
+ for l in self.convs:
1038
+ x = l(x)
1039
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1040
+ fmap.append(x)
1041
+ x = self.conv_post(x)
1042
+ fmap.append(x)
1043
+ x = torch.flatten(x, 1, -1)
1044
+
1045
+ return x, fmap
1046
+
1047
+
1048
+ class DiscriminatorP(torch.nn.Module):
1049
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
1050
+ super(DiscriminatorP, self).__init__()
1051
+ self.period = period
1052
+ self.use_spectral_norm = use_spectral_norm
1053
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
1054
+ self.convs = nn.ModuleList(
1055
+ [
1056
+ norm_f(
1057
+ Conv2d(
1058
+ 1,
1059
+ 32,
1060
+ (kernel_size, 1),
1061
+ (stride, 1),
1062
+ padding=(get_padding(kernel_size, 1), 0),
1063
+ )
1064
+ ),
1065
+ norm_f(
1066
+ Conv2d(
1067
+ 32,
1068
+ 128,
1069
+ (kernel_size, 1),
1070
+ (stride, 1),
1071
+ padding=(get_padding(kernel_size, 1), 0),
1072
+ )
1073
+ ),
1074
+ norm_f(
1075
+ Conv2d(
1076
+ 128,
1077
+ 512,
1078
+ (kernel_size, 1),
1079
+ (stride, 1),
1080
+ padding=(get_padding(kernel_size, 1), 0),
1081
+ )
1082
+ ),
1083
+ norm_f(
1084
+ Conv2d(
1085
+ 512,
1086
+ 1024,
1087
+ (kernel_size, 1),
1088
+ (stride, 1),
1089
+ padding=(get_padding(kernel_size, 1), 0),
1090
+ )
1091
+ ),
1092
+ norm_f(
1093
+ Conv2d(
1094
+ 1024,
1095
+ 1024,
1096
+ (kernel_size, 1),
1097
+ 1,
1098
+ padding=(get_padding(kernel_size, 1), 0),
1099
+ )
1100
+ ),
1101
+ ]
1102
+ )
1103
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
1104
+
1105
+ def forward(self, x):
1106
+ fmap = []
1107
+
1108
+ # 1d to 2d
1109
+ b, c, t = x.shape
1110
+ if t % self.period != 0: # pad first
1111
+ n_pad = self.period - (t % self.period)
1112
+ x = F.pad(x, (0, n_pad), "reflect")
1113
+ t = t + n_pad
1114
+ x = x.view(b, c, t // self.period, self.period)
1115
+
1116
+ for l in self.convs:
1117
+ x = l(x)
1118
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
1119
+ fmap.append(x)
1120
+ x = self.conv_post(x)
1121
+ fmap.append(x)
1122
+ x = torch.flatten(x, 1, -1)
1123
+
1124
+ return x, fmap
lib/infer_pack/models_onnx.py ADDED
@@ -0,0 +1,819 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math, pdb, os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from lib.infer_pack import modules
7
+ from lib.infer_pack import attentions
8
+ from lib.infer_pack import commons
9
+ from lib.infer_pack.commons import init_weights, get_padding
10
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
11
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
12
+ from lib.infer_pack.commons import init_weights
13
+ import numpy as np
14
+ from lib.infer_pack import commons
15
+
16
+
17
+ class TextEncoder256(nn.Module):
18
+ def __init__(
19
+ self,
20
+ out_channels,
21
+ hidden_channels,
22
+ filter_channels,
23
+ n_heads,
24
+ n_layers,
25
+ kernel_size,
26
+ p_dropout,
27
+ f0=True,
28
+ ):
29
+ super().__init__()
30
+ self.out_channels = out_channels
31
+ self.hidden_channels = hidden_channels
32
+ self.filter_channels = filter_channels
33
+ self.n_heads = n_heads
34
+ self.n_layers = n_layers
35
+ self.kernel_size = kernel_size
36
+ self.p_dropout = p_dropout
37
+ self.emb_phone = nn.Linear(256, hidden_channels)
38
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
39
+ if f0 == True:
40
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
41
+ self.encoder = attentions.Encoder(
42
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
43
+ )
44
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
45
+
46
+ def forward(self, phone, pitch, lengths):
47
+ if pitch == None:
48
+ x = self.emb_phone(phone)
49
+ else:
50
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
51
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
52
+ x = self.lrelu(x)
53
+ x = torch.transpose(x, 1, -1) # [b, h, t]
54
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
55
+ x.dtype
56
+ )
57
+ x = self.encoder(x * x_mask, x_mask)
58
+ stats = self.proj(x) * x_mask
59
+
60
+ m, logs = torch.split(stats, self.out_channels, dim=1)
61
+ return m, logs, x_mask
62
+
63
+
64
+ class TextEncoder768(nn.Module):
65
+ def __init__(
66
+ self,
67
+ out_channels,
68
+ hidden_channels,
69
+ filter_channels,
70
+ n_heads,
71
+ n_layers,
72
+ kernel_size,
73
+ p_dropout,
74
+ f0=True,
75
+ ):
76
+ super().__init__()
77
+ self.out_channels = out_channels
78
+ self.hidden_channels = hidden_channels
79
+ self.filter_channels = filter_channels
80
+ self.n_heads = n_heads
81
+ self.n_layers = n_layers
82
+ self.kernel_size = kernel_size
83
+ self.p_dropout = p_dropout
84
+ self.emb_phone = nn.Linear(768, hidden_channels)
85
+ self.lrelu = nn.LeakyReLU(0.1, inplace=True)
86
+ if f0 == True:
87
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
88
+ self.encoder = attentions.Encoder(
89
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
90
+ )
91
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
92
+
93
+ def forward(self, phone, pitch, lengths):
94
+ if pitch == None:
95
+ x = self.emb_phone(phone)
96
+ else:
97
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
98
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
99
+ x = self.lrelu(x)
100
+ x = torch.transpose(x, 1, -1) # [b, h, t]
101
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
102
+ x.dtype
103
+ )
104
+ x = self.encoder(x * x_mask, x_mask)
105
+ stats = self.proj(x) * x_mask
106
+
107
+ m, logs = torch.split(stats, self.out_channels, dim=1)
108
+ return m, logs, x_mask
109
+
110
+
111
+ class ResidualCouplingBlock(nn.Module):
112
+ def __init__(
113
+ self,
114
+ channels,
115
+ hidden_channels,
116
+ kernel_size,
117
+ dilation_rate,
118
+ n_layers,
119
+ n_flows=4,
120
+ gin_channels=0,
121
+ ):
122
+ super().__init__()
123
+ self.channels = channels
124
+ self.hidden_channels = hidden_channels
125
+ self.kernel_size = kernel_size
126
+ self.dilation_rate = dilation_rate
127
+ self.n_layers = n_layers
128
+ self.n_flows = n_flows
129
+ self.gin_channels = gin_channels
130
+
131
+ self.flows = nn.ModuleList()
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.ResidualCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=gin_channels,
141
+ mean_only=True,
142
+ )
143
+ )
144
+ self.flows.append(modules.Flip())
145
+
146
+ def forward(self, x, x_mask, g=None, reverse=False):
147
+ if not reverse:
148
+ for flow in self.flows:
149
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
150
+ else:
151
+ for flow in reversed(self.flows):
152
+ x = flow(x, x_mask, g=g, reverse=reverse)
153
+ return x
154
+
155
+ def remove_weight_norm(self):
156
+ for i in range(self.n_flows):
157
+ self.flows[i * 2].remove_weight_norm()
158
+
159
+
160
+ class PosteriorEncoder(nn.Module):
161
+ def __init__(
162
+ self,
163
+ in_channels,
164
+ out_channels,
165
+ hidden_channels,
166
+ kernel_size,
167
+ dilation_rate,
168
+ n_layers,
169
+ gin_channels=0,
170
+ ):
171
+ super().__init__()
172
+ self.in_channels = in_channels
173
+ self.out_channels = out_channels
174
+ self.hidden_channels = hidden_channels
175
+ self.kernel_size = kernel_size
176
+ self.dilation_rate = dilation_rate
177
+ self.n_layers = n_layers
178
+ self.gin_channels = gin_channels
179
+
180
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
181
+ self.enc = modules.WN(
182
+ hidden_channels,
183
+ kernel_size,
184
+ dilation_rate,
185
+ n_layers,
186
+ gin_channels=gin_channels,
187
+ )
188
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
189
+
190
+ def forward(self, x, x_lengths, g=None):
191
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
192
+ x.dtype
193
+ )
194
+ x = self.pre(x) * x_mask
195
+ x = self.enc(x, x_mask, g=g)
196
+ stats = self.proj(x) * x_mask
197
+ m, logs = torch.split(stats, self.out_channels, dim=1)
198
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
199
+ return z, m, logs, x_mask
200
+
201
+ def remove_weight_norm(self):
202
+ self.enc.remove_weight_norm()
203
+
204
+
205
+ class Generator(torch.nn.Module):
206
+ def __init__(
207
+ self,
208
+ initial_channel,
209
+ resblock,
210
+ resblock_kernel_sizes,
211
+ resblock_dilation_sizes,
212
+ upsample_rates,
213
+ upsample_initial_channel,
214
+ upsample_kernel_sizes,
215
+ gin_channels=0,
216
+ ):
217
+ super(Generator, self).__init__()
218
+ self.num_kernels = len(resblock_kernel_sizes)
219
+ self.num_upsamples = len(upsample_rates)
220
+ self.conv_pre = Conv1d(
221
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
222
+ )
223
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
224
+
225
+ self.ups = nn.ModuleList()
226
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
227
+ self.ups.append(
228
+ weight_norm(
229
+ ConvTranspose1d(
230
+ upsample_initial_channel // (2**i),
231
+ upsample_initial_channel // (2 ** (i + 1)),
232
+ k,
233
+ u,
234
+ padding=(k - u) // 2,
235
+ )
236
+ )
237
+ )
238
+
239
+ self.resblocks = nn.ModuleList()
240
+ for i in range(len(self.ups)):
241
+ ch = upsample_initial_channel // (2 ** (i + 1))
242
+ for j, (k, d) in enumerate(
243
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
244
+ ):
245
+ self.resblocks.append(resblock(ch, k, d))
246
+
247
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
248
+ self.ups.apply(init_weights)
249
+
250
+ if gin_channels != 0:
251
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
252
+
253
+ def forward(self, x, g=None):
254
+ x = self.conv_pre(x)
255
+ if g is not None:
256
+ x = x + self.cond(g)
257
+
258
+ for i in range(self.num_upsamples):
259
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
260
+ x = self.ups[i](x)
261
+ xs = None
262
+ for j in range(self.num_kernels):
263
+ if xs is None:
264
+ xs = self.resblocks[i * self.num_kernels + j](x)
265
+ else:
266
+ xs += self.resblocks[i * self.num_kernels + j](x)
267
+ x = xs / self.num_kernels
268
+ x = F.leaky_relu(x)
269
+ x = self.conv_post(x)
270
+ x = torch.tanh(x)
271
+
272
+ return x
273
+
274
+ def remove_weight_norm(self):
275
+ for l in self.ups:
276
+ remove_weight_norm(l)
277
+ for l in self.resblocks:
278
+ l.remove_weight_norm()
279
+
280
+
281
+ class SineGen(torch.nn.Module):
282
+ """Definition of sine generator
283
+ SineGen(samp_rate, harmonic_num = 0,
284
+ sine_amp = 0.1, noise_std = 0.003,
285
+ voiced_threshold = 0,
286
+ flag_for_pulse=False)
287
+ samp_rate: sampling rate in Hz
288
+ harmonic_num: number of harmonic overtones (default 0)
289
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
290
+ noise_std: std of Gaussian noise (default 0.003)
291
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
292
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
293
+ Note: when flag_for_pulse is True, the first time step of a voiced
294
+ segment is always sin(np.pi) or cos(0)
295
+ """
296
+
297
+ def __init__(
298
+ self,
299
+ samp_rate,
300
+ harmonic_num=0,
301
+ sine_amp=0.1,
302
+ noise_std=0.003,
303
+ voiced_threshold=0,
304
+ flag_for_pulse=False,
305
+ ):
306
+ super(SineGen, self).__init__()
307
+ self.sine_amp = sine_amp
308
+ self.noise_std = noise_std
309
+ self.harmonic_num = harmonic_num
310
+ self.dim = self.harmonic_num + 1
311
+ self.sampling_rate = samp_rate
312
+ self.voiced_threshold = voiced_threshold
313
+
314
+ def _f02uv(self, f0):
315
+ # generate uv signal
316
+ uv = torch.ones_like(f0)
317
+ uv = uv * (f0 > self.voiced_threshold)
318
+ return uv
319
+
320
+ def forward(self, f0, upp):
321
+ """sine_tensor, uv = forward(f0)
322
+ input F0: tensor(batchsize=1, length, dim=1)
323
+ f0 for unvoiced steps should be 0
324
+ output sine_tensor: tensor(batchsize=1, length, dim)
325
+ output uv: tensor(batchsize=1, length, 1)
326
+ """
327
+ with torch.no_grad():
328
+ f0 = f0[:, None].transpose(1, 2)
329
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
330
+ # fundamental component
331
+ f0_buf[:, :, 0] = f0[:, :, 0]
332
+ for idx in np.arange(self.harmonic_num):
333
+ f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
334
+ idx + 2
335
+ ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
336
+ rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
337
+ rand_ini = torch.rand(
338
+ f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
339
+ )
340
+ rand_ini[:, 0] = 0
341
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
342
+ tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
343
+ tmp_over_one *= upp
344
+ tmp_over_one = F.interpolate(
345
+ tmp_over_one.transpose(2, 1),
346
+ scale_factor=upp,
347
+ mode="linear",
348
+ align_corners=True,
349
+ ).transpose(2, 1)
350
+ rad_values = F.interpolate(
351
+ rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
352
+ ).transpose(
353
+ 2, 1
354
+ ) #######
355
+ tmp_over_one %= 1
356
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
357
+ cumsum_shift = torch.zeros_like(rad_values)
358
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
359
+ sine_waves = torch.sin(
360
+ torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
361
+ )
362
+ sine_waves = sine_waves * self.sine_amp
363
+ uv = self._f02uv(f0)
364
+ uv = F.interpolate(
365
+ uv.transpose(2, 1), scale_factor=upp, mode="nearest"
366
+ ).transpose(2, 1)
367
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
368
+ noise = noise_amp * torch.randn_like(sine_waves)
369
+ sine_waves = sine_waves * uv + noise
370
+ return sine_waves, uv, noise
371
+
372
+
373
+ class SourceModuleHnNSF(torch.nn.Module):
374
+ """SourceModule for hn-nsf
375
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
376
+ add_noise_std=0.003, voiced_threshod=0)
377
+ sampling_rate: sampling_rate in Hz
378
+ harmonic_num: number of harmonic above F0 (default: 0)
379
+ sine_amp: amplitude of sine source signal (default: 0.1)
380
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
381
+ note that amplitude of noise in unvoiced is decided
382
+ by sine_amp
383
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
384
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
385
+ F0_sampled (batchsize, length, 1)
386
+ Sine_source (batchsize, length, 1)
387
+ noise_source (batchsize, length 1)
388
+ uv (batchsize, length, 1)
389
+ """
390
+
391
+ def __init__(
392
+ self,
393
+ sampling_rate,
394
+ harmonic_num=0,
395
+ sine_amp=0.1,
396
+ add_noise_std=0.003,
397
+ voiced_threshod=0,
398
+ is_half=True,
399
+ ):
400
+ super(SourceModuleHnNSF, self).__init__()
401
+
402
+ self.sine_amp = sine_amp
403
+ self.noise_std = add_noise_std
404
+ self.is_half = is_half
405
+ # to produce sine waveforms
406
+ self.l_sin_gen = SineGen(
407
+ sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
408
+ )
409
+
410
+ # to merge source harmonics into a single excitation
411
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
412
+ self.l_tanh = torch.nn.Tanh()
413
+
414
+ def forward(self, x, upp=None):
415
+ sine_wavs, uv, _ = self.l_sin_gen(x, upp)
416
+ if self.is_half:
417
+ sine_wavs = sine_wavs.half()
418
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
419
+ return sine_merge, None, None # noise, uv
420
+
421
+
422
+ class GeneratorNSF(torch.nn.Module):
423
+ def __init__(
424
+ self,
425
+ initial_channel,
426
+ resblock,
427
+ resblock_kernel_sizes,
428
+ resblock_dilation_sizes,
429
+ upsample_rates,
430
+ upsample_initial_channel,
431
+ upsample_kernel_sizes,
432
+ gin_channels,
433
+ sr,
434
+ is_half=False,
435
+ ):
436
+ super(GeneratorNSF, self).__init__()
437
+ self.num_kernels = len(resblock_kernel_sizes)
438
+ self.num_upsamples = len(upsample_rates)
439
+
440
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
441
+ self.m_source = SourceModuleHnNSF(
442
+ sampling_rate=sr, harmonic_num=0, is_half=is_half
443
+ )
444
+ self.noise_convs = nn.ModuleList()
445
+ self.conv_pre = Conv1d(
446
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
447
+ )
448
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
449
+
450
+ self.ups = nn.ModuleList()
451
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
452
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
453
+ self.ups.append(
454
+ weight_norm(
455
+ ConvTranspose1d(
456
+ upsample_initial_channel // (2**i),
457
+ upsample_initial_channel // (2 ** (i + 1)),
458
+ k,
459
+ u,
460
+ padding=(k - u) // 2,
461
+ )
462
+ )
463
+ )
464
+ if i + 1 < len(upsample_rates):
465
+ stride_f0 = np.prod(upsample_rates[i + 1 :])
466
+ self.noise_convs.append(
467
+ Conv1d(
468
+ 1,
469
+ c_cur,
470
+ kernel_size=stride_f0 * 2,
471
+ stride=stride_f0,
472
+ padding=stride_f0 // 2,
473
+ )
474
+ )
475
+ else:
476
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
477
+
478
+ self.resblocks = nn.ModuleList()
479
+ for i in range(len(self.ups)):
480
+ ch = upsample_initial_channel // (2 ** (i + 1))
481
+ for j, (k, d) in enumerate(
482
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
483
+ ):
484
+ self.resblocks.append(resblock(ch, k, d))
485
+
486
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
487
+ self.ups.apply(init_weights)
488
+
489
+ if gin_channels != 0:
490
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
491
+
492
+ self.upp = np.prod(upsample_rates)
493
+
494
+ def forward(self, x, f0, g=None):
495
+ har_source, noi_source, uv = self.m_source(f0, self.upp)
496
+ har_source = har_source.transpose(1, 2)
497
+ x = self.conv_pre(x)
498
+ if g is not None:
499
+ x = x + self.cond(g)
500
+
501
+ for i in range(self.num_upsamples):
502
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
503
+ x = self.ups[i](x)
504
+ x_source = self.noise_convs[i](har_source)
505
+ x = x + x_source
506
+ xs = None
507
+ for j in range(self.num_kernels):
508
+ if xs is None:
509
+ xs = self.resblocks[i * self.num_kernels + j](x)
510
+ else:
511
+ xs += self.resblocks[i * self.num_kernels + j](x)
512
+ x = xs / self.num_kernels
513
+ x = F.leaky_relu(x)
514
+ x = self.conv_post(x)
515
+ x = torch.tanh(x)
516
+ return x
517
+
518
+ def remove_weight_norm(self):
519
+ for l in self.ups:
520
+ remove_weight_norm(l)
521
+ for l in self.resblocks:
522
+ l.remove_weight_norm()
523
+
524
+
525
+ sr2sr = {
526
+ "32k": 32000,
527
+ "40k": 40000,
528
+ "48k": 48000,
529
+ }
530
+
531
+
532
+ class SynthesizerTrnMsNSFsidM(nn.Module):
533
+ def __init__(
534
+ self,
535
+ spec_channels,
536
+ segment_size,
537
+ inter_channels,
538
+ hidden_channels,
539
+ filter_channels,
540
+ n_heads,
541
+ n_layers,
542
+ kernel_size,
543
+ p_dropout,
544
+ resblock,
545
+ resblock_kernel_sizes,
546
+ resblock_dilation_sizes,
547
+ upsample_rates,
548
+ upsample_initial_channel,
549
+ upsample_kernel_sizes,
550
+ spk_embed_dim,
551
+ gin_channels,
552
+ sr,
553
+ version,
554
+ **kwargs
555
+ ):
556
+ super().__init__()
557
+ if type(sr) == type("strr"):
558
+ sr = sr2sr[sr]
559
+ self.spec_channels = spec_channels
560
+ self.inter_channels = inter_channels
561
+ self.hidden_channels = hidden_channels
562
+ self.filter_channels = filter_channels
563
+ self.n_heads = n_heads
564
+ self.n_layers = n_layers
565
+ self.kernel_size = kernel_size
566
+ self.p_dropout = p_dropout
567
+ self.resblock = resblock
568
+ self.resblock_kernel_sizes = resblock_kernel_sizes
569
+ self.resblock_dilation_sizes = resblock_dilation_sizes
570
+ self.upsample_rates = upsample_rates
571
+ self.upsample_initial_channel = upsample_initial_channel
572
+ self.upsample_kernel_sizes = upsample_kernel_sizes
573
+ self.segment_size = segment_size
574
+ self.gin_channels = gin_channels
575
+ # self.hop_length = hop_length#
576
+ self.spk_embed_dim = spk_embed_dim
577
+ if version == "v1":
578
+ self.enc_p = TextEncoder256(
579
+ inter_channels,
580
+ hidden_channels,
581
+ filter_channels,
582
+ n_heads,
583
+ n_layers,
584
+ kernel_size,
585
+ p_dropout,
586
+ )
587
+ else:
588
+ self.enc_p = TextEncoder768(
589
+ inter_channels,
590
+ hidden_channels,
591
+ filter_channels,
592
+ n_heads,
593
+ n_layers,
594
+ kernel_size,
595
+ p_dropout,
596
+ )
597
+ self.dec = GeneratorNSF(
598
+ inter_channels,
599
+ resblock,
600
+ resblock_kernel_sizes,
601
+ resblock_dilation_sizes,
602
+ upsample_rates,
603
+ upsample_initial_channel,
604
+ upsample_kernel_sizes,
605
+ gin_channels=gin_channels,
606
+ sr=sr,
607
+ is_half=kwargs["is_half"],
608
+ )
609
+ self.enc_q = PosteriorEncoder(
610
+ spec_channels,
611
+ inter_channels,
612
+ hidden_channels,
613
+ 5,
614
+ 1,
615
+ 16,
616
+ gin_channels=gin_channels,
617
+ )
618
+ self.flow = ResidualCouplingBlock(
619
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
620
+ )
621
+ self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
622
+ self.speaker_map = None
623
+ print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
624
+
625
+ def remove_weight_norm(self):
626
+ self.dec.remove_weight_norm()
627
+ self.flow.remove_weight_norm()
628
+ self.enc_q.remove_weight_norm()
629
+
630
+ def construct_spkmixmap(self, n_speaker):
631
+ self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
632
+ for i in range(n_speaker):
633
+ self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
634
+ self.speaker_map = self.speaker_map.unsqueeze(0)
635
+
636
+ def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
637
+ if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
638
+ g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
639
+ g = g * self.speaker_map # [N, S, B, 1, H]
640
+ g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
641
+ g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
642
+ else:
643
+ g = g.unsqueeze(0)
644
+ g = self.emb_g(g).transpose(1, 2)
645
+
646
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
647
+ z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
648
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
649
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
650
+ return o
651
+
652
+
653
+ class MultiPeriodDiscriminator(torch.nn.Module):
654
+ def __init__(self, use_spectral_norm=False):
655
+ super(MultiPeriodDiscriminator, self).__init__()
656
+ periods = [2, 3, 5, 7, 11, 17]
657
+ # periods = [3, 5, 7, 11, 17, 23, 37]
658
+
659
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
660
+ discs = discs + [
661
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
662
+ ]
663
+ self.discriminators = nn.ModuleList(discs)
664
+
665
+ def forward(self, y, y_hat):
666
+ y_d_rs = [] #
667
+ y_d_gs = []
668
+ fmap_rs = []
669
+ fmap_gs = []
670
+ for i, d in enumerate(self.discriminators):
671
+ y_d_r, fmap_r = d(y)
672
+ y_d_g, fmap_g = d(y_hat)
673
+ # for j in range(len(fmap_r)):
674
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
675
+ y_d_rs.append(y_d_r)
676
+ y_d_gs.append(y_d_g)
677
+ fmap_rs.append(fmap_r)
678
+ fmap_gs.append(fmap_g)
679
+
680
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
681
+
682
+
683
+ class MultiPeriodDiscriminatorV2(torch.nn.Module):
684
+ def __init__(self, use_spectral_norm=False):
685
+ super(MultiPeriodDiscriminatorV2, self).__init__()
686
+ # periods = [2, 3, 5, 7, 11, 17]
687
+ periods = [2, 3, 5, 7, 11, 17, 23, 37]
688
+
689
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
690
+ discs = discs + [
691
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
692
+ ]
693
+ self.discriminators = nn.ModuleList(discs)
694
+
695
+ def forward(self, y, y_hat):
696
+ y_d_rs = [] #
697
+ y_d_gs = []
698
+ fmap_rs = []
699
+ fmap_gs = []
700
+ for i, d in enumerate(self.discriminators):
701
+ y_d_r, fmap_r = d(y)
702
+ y_d_g, fmap_g = d(y_hat)
703
+ # for j in range(len(fmap_r)):
704
+ # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
705
+ y_d_rs.append(y_d_r)
706
+ y_d_gs.append(y_d_g)
707
+ fmap_rs.append(fmap_r)
708
+ fmap_gs.append(fmap_g)
709
+
710
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
711
+
712
+
713
+ class DiscriminatorS(torch.nn.Module):
714
+ def __init__(self, use_spectral_norm=False):
715
+ super(DiscriminatorS, self).__init__()
716
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
717
+ self.convs = nn.ModuleList(
718
+ [
719
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
720
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
721
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
722
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
723
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
724
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
725
+ ]
726
+ )
727
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
728
+
729
+ def forward(self, x):
730
+ fmap = []
731
+
732
+ for l in self.convs:
733
+ x = l(x)
734
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
735
+ fmap.append(x)
736
+ x = self.conv_post(x)
737
+ fmap.append(x)
738
+ x = torch.flatten(x, 1, -1)
739
+
740
+ return x, fmap
741
+
742
+
743
+ class DiscriminatorP(torch.nn.Module):
744
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
745
+ super(DiscriminatorP, self).__init__()
746
+ self.period = period
747
+ self.use_spectral_norm = use_spectral_norm
748
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
749
+ self.convs = nn.ModuleList(
750
+ [
751
+ norm_f(
752
+ Conv2d(
753
+ 1,
754
+ 32,
755
+ (kernel_size, 1),
756
+ (stride, 1),
757
+ padding=(get_padding(kernel_size, 1), 0),
758
+ )
759
+ ),
760
+ norm_f(
761
+ Conv2d(
762
+ 32,
763
+ 128,
764
+ (kernel_size, 1),
765
+ (stride, 1),
766
+ padding=(get_padding(kernel_size, 1), 0),
767
+ )
768
+ ),
769
+ norm_f(
770
+ Conv2d(
771
+ 128,
772
+ 512,
773
+ (kernel_size, 1),
774
+ (stride, 1),
775
+ padding=(get_padding(kernel_size, 1), 0),
776
+ )
777
+ ),
778
+ norm_f(
779
+ Conv2d(
780
+ 512,
781
+ 1024,
782
+ (kernel_size, 1),
783
+ (stride, 1),
784
+ padding=(get_padding(kernel_size, 1), 0),
785
+ )
786
+ ),
787
+ norm_f(
788
+ Conv2d(
789
+ 1024,
790
+ 1024,
791
+ (kernel_size, 1),
792
+ 1,
793
+ padding=(get_padding(kernel_size, 1), 0),
794
+ )
795
+ ),
796
+ ]
797
+ )
798
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
799
+
800
+ def forward(self, x):
801
+ fmap = []
802
+
803
+ # 1d to 2d
804
+ b, c, t = x.shape
805
+ if t % self.period != 0: # pad first
806
+ n_pad = self.period - (t % self.period)
807
+ x = F.pad(x, (0, n_pad), "reflect")
808
+ t = t + n_pad
809
+ x = x.view(b, c, t // self.period, self.period)
810
+
811
+ for l in self.convs:
812
+ x = l(x)
813
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
814
+ fmap.append(x)
815
+ x = self.conv_post(x)
816
+ fmap.append(x)
817
+ x = torch.flatten(x, 1, -1)
818
+
819
+ return x, fmap
lib/infer_pack/modules.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ from lib.infer_pack import commons
13
+ from lib.infer_pack.commons import init_weights, get_padding
14
+ from lib.infer_pack.transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(
37
+ self,
38
+ in_channels,
39
+ hidden_channels,
40
+ out_channels,
41
+ kernel_size,
42
+ n_layers,
43
+ p_dropout,
44
+ ):
45
+ super().__init__()
46
+ self.in_channels = in_channels
47
+ self.hidden_channels = hidden_channels
48
+ self.out_channels = out_channels
49
+ self.kernel_size = kernel_size
50
+ self.n_layers = n_layers
51
+ self.p_dropout = p_dropout
52
+ assert n_layers > 1, "Number of layers should be larger than 0."
53
+
54
+ self.conv_layers = nn.ModuleList()
55
+ self.norm_layers = nn.ModuleList()
56
+ self.conv_layers.append(
57
+ nn.Conv1d(
58
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
59
+ )
60
+ )
61
+ self.norm_layers.append(LayerNorm(hidden_channels))
62
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
63
+ for _ in range(n_layers - 1):
64
+ self.conv_layers.append(
65
+ nn.Conv1d(
66
+ hidden_channels,
67
+ hidden_channels,
68
+ kernel_size,
69
+ padding=kernel_size // 2,
70
+ )
71
+ )
72
+ self.norm_layers.append(LayerNorm(hidden_channels))
73
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
74
+ self.proj.weight.data.zero_()
75
+ self.proj.bias.data.zero_()
76
+
77
+ def forward(self, x, x_mask):
78
+ x_org = x
79
+ for i in range(self.n_layers):
80
+ x = self.conv_layers[i](x * x_mask)
81
+ x = self.norm_layers[i](x)
82
+ x = self.relu_drop(x)
83
+ x = x_org + self.proj(x)
84
+ return x * x_mask
85
+
86
+
87
+ class DDSConv(nn.Module):
88
+ """
89
+ Dialted and Depth-Separable Convolution
90
+ """
91
+
92
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
93
+ super().__init__()
94
+ self.channels = channels
95
+ self.kernel_size = kernel_size
96
+ self.n_layers = n_layers
97
+ self.p_dropout = p_dropout
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.convs_sep = nn.ModuleList()
101
+ self.convs_1x1 = nn.ModuleList()
102
+ self.norms_1 = nn.ModuleList()
103
+ self.norms_2 = nn.ModuleList()
104
+ for i in range(n_layers):
105
+ dilation = kernel_size**i
106
+ padding = (kernel_size * dilation - dilation) // 2
107
+ self.convs_sep.append(
108
+ nn.Conv1d(
109
+ channels,
110
+ channels,
111
+ kernel_size,
112
+ groups=channels,
113
+ dilation=dilation,
114
+ padding=padding,
115
+ )
116
+ )
117
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
118
+ self.norms_1.append(LayerNorm(channels))
119
+ self.norms_2.append(LayerNorm(channels))
120
+
121
+ def forward(self, x, x_mask, g=None):
122
+ if g is not None:
123
+ x = x + g
124
+ for i in range(self.n_layers):
125
+ y = self.convs_sep[i](x * x_mask)
126
+ y = self.norms_1[i](y)
127
+ y = F.gelu(y)
128
+ y = self.convs_1x1[i](y)
129
+ y = self.norms_2[i](y)
130
+ y = F.gelu(y)
131
+ y = self.drop(y)
132
+ x = x + y
133
+ return x * x_mask
134
+
135
+
136
+ class WN(torch.nn.Module):
137
+ def __init__(
138
+ self,
139
+ hidden_channels,
140
+ kernel_size,
141
+ dilation_rate,
142
+ n_layers,
143
+ gin_channels=0,
144
+ p_dropout=0,
145
+ ):
146
+ super(WN, self).__init__()
147
+ assert kernel_size % 2 == 1
148
+ self.hidden_channels = hidden_channels
149
+ self.kernel_size = (kernel_size,)
150
+ self.dilation_rate = dilation_rate
151
+ self.n_layers = n_layers
152
+ self.gin_channels = gin_channels
153
+ self.p_dropout = p_dropout
154
+
155
+ self.in_layers = torch.nn.ModuleList()
156
+ self.res_skip_layers = torch.nn.ModuleList()
157
+ self.drop = nn.Dropout(p_dropout)
158
+
159
+ if gin_channels != 0:
160
+ cond_layer = torch.nn.Conv1d(
161
+ gin_channels, 2 * hidden_channels * n_layers, 1
162
+ )
163
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
164
+
165
+ for i in range(n_layers):
166
+ dilation = dilation_rate**i
167
+ padding = int((kernel_size * dilation - dilation) / 2)
168
+ in_layer = torch.nn.Conv1d(
169
+ hidden_channels,
170
+ 2 * hidden_channels,
171
+ kernel_size,
172
+ dilation=dilation,
173
+ padding=padding,
174
+ )
175
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
176
+ self.in_layers.append(in_layer)
177
+
178
+ # last one is not necessary
179
+ if i < n_layers - 1:
180
+ res_skip_channels = 2 * hidden_channels
181
+ else:
182
+ res_skip_channels = hidden_channels
183
+
184
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
185
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
186
+ self.res_skip_layers.append(res_skip_layer)
187
+
188
+ def forward(self, x, x_mask, g=None, **kwargs):
189
+ output = torch.zeros_like(x)
190
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
191
+
192
+ if g is not None:
193
+ g = self.cond_layer(g)
194
+
195
+ for i in range(self.n_layers):
196
+ x_in = self.in_layers[i](x)
197
+ if g is not None:
198
+ cond_offset = i * 2 * self.hidden_channels
199
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
200
+ else:
201
+ g_l = torch.zeros_like(x_in)
202
+
203
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
204
+ acts = self.drop(acts)
205
+
206
+ res_skip_acts = self.res_skip_layers[i](acts)
207
+ if i < self.n_layers - 1:
208
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
209
+ x = (x + res_acts) * x_mask
210
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
211
+ else:
212
+ output = output + res_skip_acts
213
+ return output * x_mask
214
+
215
+ def remove_weight_norm(self):
216
+ if self.gin_channels != 0:
217
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
218
+ for l in self.in_layers:
219
+ torch.nn.utils.remove_weight_norm(l)
220
+ for l in self.res_skip_layers:
221
+ torch.nn.utils.remove_weight_norm(l)
222
+
223
+
224
+ class ResBlock1(torch.nn.Module):
225
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
226
+ super(ResBlock1, self).__init__()
227
+ self.convs1 = nn.ModuleList(
228
+ [
229
+ weight_norm(
230
+ Conv1d(
231
+ channels,
232
+ channels,
233
+ kernel_size,
234
+ 1,
235
+ dilation=dilation[0],
236
+ padding=get_padding(kernel_size, dilation[0]),
237
+ )
238
+ ),
239
+ weight_norm(
240
+ Conv1d(
241
+ channels,
242
+ channels,
243
+ kernel_size,
244
+ 1,
245
+ dilation=dilation[1],
246
+ padding=get_padding(kernel_size, dilation[1]),
247
+ )
248
+ ),
249
+ weight_norm(
250
+ Conv1d(
251
+ channels,
252
+ channels,
253
+ kernel_size,
254
+ 1,
255
+ dilation=dilation[2],
256
+ padding=get_padding(kernel_size, dilation[2]),
257
+ )
258
+ ),
259
+ ]
260
+ )
261
+ self.convs1.apply(init_weights)
262
+
263
+ self.convs2 = nn.ModuleList(
264
+ [
265
+ weight_norm(
266
+ Conv1d(
267
+ channels,
268
+ channels,
269
+ kernel_size,
270
+ 1,
271
+ dilation=1,
272
+ padding=get_padding(kernel_size, 1),
273
+ )
274
+ ),
275
+ weight_norm(
276
+ Conv1d(
277
+ channels,
278
+ channels,
279
+ kernel_size,
280
+ 1,
281
+ dilation=1,
282
+ padding=get_padding(kernel_size, 1),
283
+ )
284
+ ),
285
+ weight_norm(
286
+ Conv1d(
287
+ channels,
288
+ channels,
289
+ kernel_size,
290
+ 1,
291
+ dilation=1,
292
+ padding=get_padding(kernel_size, 1),
293
+ )
294
+ ),
295
+ ]
296
+ )
297
+ self.convs2.apply(init_weights)
298
+
299
+ def forward(self, x, x_mask=None):
300
+ for c1, c2 in zip(self.convs1, self.convs2):
301
+ xt = F.leaky_relu(x, LRELU_SLOPE)
302
+ if x_mask is not None:
303
+ xt = xt * x_mask
304
+ xt = c1(xt)
305
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
306
+ if x_mask is not None:
307
+ xt = xt * x_mask
308
+ xt = c2(xt)
309
+ x = xt + x
310
+ if x_mask is not None:
311
+ x = x * x_mask
312
+ return x
313
+
314
+ def remove_weight_norm(self):
315
+ for l in self.convs1:
316
+ remove_weight_norm(l)
317
+ for l in self.convs2:
318
+ remove_weight_norm(l)
319
+
320
+
321
+ class ResBlock2(torch.nn.Module):
322
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
323
+ super(ResBlock2, self).__init__()
324
+ self.convs = nn.ModuleList(
325
+ [
326
+ weight_norm(
327
+ Conv1d(
328
+ channels,
329
+ channels,
330
+ kernel_size,
331
+ 1,
332
+ dilation=dilation[0],
333
+ padding=get_padding(kernel_size, dilation[0]),
334
+ )
335
+ ),
336
+ weight_norm(
337
+ Conv1d(
338
+ channels,
339
+ channels,
340
+ kernel_size,
341
+ 1,
342
+ dilation=dilation[1],
343
+ padding=get_padding(kernel_size, dilation[1]),
344
+ )
345
+ ),
346
+ ]
347
+ )
348
+ self.convs.apply(init_weights)
349
+
350
+ def forward(self, x, x_mask=None):
351
+ for c in self.convs:
352
+ xt = F.leaky_relu(x, LRELU_SLOPE)
353
+ if x_mask is not None:
354
+ xt = xt * x_mask
355
+ xt = c(xt)
356
+ x = xt + x
357
+ if x_mask is not None:
358
+ x = x * x_mask
359
+ return x
360
+
361
+ def remove_weight_norm(self):
362
+ for l in self.convs:
363
+ remove_weight_norm(l)
364
+
365
+
366
+ class Log(nn.Module):
367
+ def forward(self, x, x_mask, reverse=False, **kwargs):
368
+ if not reverse:
369
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
370
+ logdet = torch.sum(-y, [1, 2])
371
+ return y, logdet
372
+ else:
373
+ x = torch.exp(x) * x_mask
374
+ return x
375
+
376
+
377
+ class Flip(nn.Module):
378
+ def forward(self, x, *args, reverse=False, **kwargs):
379
+ x = torch.flip(x, [1])
380
+ if not reverse:
381
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
382
+ return x, logdet
383
+ else:
384
+ return x
385
+
386
+
387
+ class ElementwiseAffine(nn.Module):
388
+ def __init__(self, channels):
389
+ super().__init__()
390
+ self.channels = channels
391
+ self.m = nn.Parameter(torch.zeros(channels, 1))
392
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
393
+
394
+ def forward(self, x, x_mask, reverse=False, **kwargs):
395
+ if not reverse:
396
+ y = self.m + torch.exp(self.logs) * x
397
+ y = y * x_mask
398
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
399
+ return y, logdet
400
+ else:
401
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
402
+ return x
403
+
404
+
405
+ class ResidualCouplingLayer(nn.Module):
406
+ def __init__(
407
+ self,
408
+ channels,
409
+ hidden_channels,
410
+ kernel_size,
411
+ dilation_rate,
412
+ n_layers,
413
+ p_dropout=0,
414
+ gin_channels=0,
415
+ mean_only=False,
416
+ ):
417
+ assert channels % 2 == 0, "channels should be divisible by 2"
418
+ super().__init__()
419
+ self.channels = channels
420
+ self.hidden_channels = hidden_channels
421
+ self.kernel_size = kernel_size
422
+ self.dilation_rate = dilation_rate
423
+ self.n_layers = n_layers
424
+ self.half_channels = channels // 2
425
+ self.mean_only = mean_only
426
+
427
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
428
+ self.enc = WN(
429
+ hidden_channels,
430
+ kernel_size,
431
+ dilation_rate,
432
+ n_layers,
433
+ p_dropout=p_dropout,
434
+ gin_channels=gin_channels,
435
+ )
436
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
437
+ self.post.weight.data.zero_()
438
+ self.post.bias.data.zero_()
439
+
440
+ def forward(self, x, x_mask, g=None, reverse=False):
441
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
442
+ h = self.pre(x0) * x_mask
443
+ h = self.enc(h, x_mask, g=g)
444
+ stats = self.post(h) * x_mask
445
+ if not self.mean_only:
446
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
447
+ else:
448
+ m = stats
449
+ logs = torch.zeros_like(m)
450
+
451
+ if not reverse:
452
+ x1 = m + x1 * torch.exp(logs) * x_mask
453
+ x = torch.cat([x0, x1], 1)
454
+ logdet = torch.sum(logs, [1, 2])
455
+ return x, logdet
456
+ else:
457
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
458
+ x = torch.cat([x0, x1], 1)
459
+ return x
460
+
461
+ def remove_weight_norm(self):
462
+ self.enc.remove_weight_norm()
463
+
464
+
465
+ class ConvFlow(nn.Module):
466
+ def __init__(
467
+ self,
468
+ in_channels,
469
+ filter_channels,
470
+ kernel_size,
471
+ n_layers,
472
+ num_bins=10,
473
+ tail_bound=5.0,
474
+ ):
475
+ super().__init__()
476
+ self.in_channels = in_channels
477
+ self.filter_channels = filter_channels
478
+ self.kernel_size = kernel_size
479
+ self.n_layers = n_layers
480
+ self.num_bins = num_bins
481
+ self.tail_bound = tail_bound
482
+ self.half_channels = in_channels // 2
483
+
484
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
485
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
486
+ self.proj = nn.Conv1d(
487
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
488
+ )
489
+ self.proj.weight.data.zero_()
490
+ self.proj.bias.data.zero_()
491
+
492
+ def forward(self, x, x_mask, g=None, reverse=False):
493
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
494
+ h = self.pre(x0)
495
+ h = self.convs(h, x_mask, g=g)
496
+ h = self.proj(h) * x_mask
497
+
498
+ b, c, t = x0.shape
499
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
500
+
501
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
502
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
503
+ self.filter_channels
504
+ )
505
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
506
+
507
+ x1, logabsdet = piecewise_rational_quadratic_transform(
508
+ x1,
509
+ unnormalized_widths,
510
+ unnormalized_heights,
511
+ unnormalized_derivatives,
512
+ inverse=reverse,
513
+ tails="linear",
514
+ tail_bound=self.tail_bound,
515
+ )
516
+
517
+ x = torch.cat([x0, x1], 1) * x_mask
518
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
519
+ if not reverse:
520
+ return x, logdet
521
+ else:
522
+ return x
lib/infer_pack/modules/F0Predictor/DioF0Predictor.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2
+ import pyworld
3
+ import numpy as np
4
+
5
+
6
+ class DioF0Predictor(F0Predictor):
7
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
8
+ self.hop_length = hop_length
9
+ self.f0_min = f0_min
10
+ self.f0_max = f0_max
11
+ self.sampling_rate = sampling_rate
12
+
13
+ def interpolate_f0(self, f0):
14
+ """
15
+ 对F0进行插值处理
16
+ """
17
+
18
+ data = np.reshape(f0, (f0.size, 1))
19
+
20
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21
+ vuv_vector[data > 0.0] = 1.0
22
+ vuv_vector[data <= 0.0] = 0.0
23
+
24
+ ip_data = data
25
+
26
+ frame_number = data.size
27
+ last_value = 0.0
28
+ for i in range(frame_number):
29
+ if data[i] <= 0.0:
30
+ j = i + 1
31
+ for j in range(i + 1, frame_number):
32
+ if data[j] > 0.0:
33
+ break
34
+ if j < frame_number - 1:
35
+ if last_value > 0.0:
36
+ step = (data[j] - data[i - 1]) / float(j - i)
37
+ for k in range(i, j):
38
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
39
+ else:
40
+ for k in range(i, j):
41
+ ip_data[k] = data[j]
42
+ else:
43
+ for k in range(i, frame_number):
44
+ ip_data[k] = last_value
45
+ else:
46
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
47
+ last_value = data[i]
48
+
49
+ return ip_data[:, 0], vuv_vector[:, 0]
50
+
51
+ def resize_f0(self, x, target_len):
52
+ source = np.array(x)
53
+ source[source < 0.001] = np.nan
54
+ target = np.interp(
55
+ np.arange(0, len(source) * target_len, len(source)) / target_len,
56
+ np.arange(0, len(source)),
57
+ source,
58
+ )
59
+ res = np.nan_to_num(target)
60
+ return res
61
+
62
+ def compute_f0(self, wav, p_len=None):
63
+ if p_len is None:
64
+ p_len = wav.shape[0] // self.hop_length
65
+ f0, t = pyworld.dio(
66
+ wav.astype(np.double),
67
+ fs=self.sampling_rate,
68
+ f0_floor=self.f0_min,
69
+ f0_ceil=self.f0_max,
70
+ frame_period=1000 * self.hop_length / self.sampling_rate,
71
+ )
72
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
73
+ for index, pitch in enumerate(f0):
74
+ f0[index] = round(pitch, 1)
75
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
76
+
77
+ def compute_f0_uv(self, wav, p_len=None):
78
+ if p_len is None:
79
+ p_len = wav.shape[0] // self.hop_length
80
+ f0, t = pyworld.dio(
81
+ wav.astype(np.double),
82
+ fs=self.sampling_rate,
83
+ f0_floor=self.f0_min,
84
+ f0_ceil=self.f0_max,
85
+ frame_period=1000 * self.hop_length / self.sampling_rate,
86
+ )
87
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
88
+ for index, pitch in enumerate(f0):
89
+ f0[index] = round(pitch, 1)
90
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
lib/infer_pack/modules/F0Predictor/F0Predictor.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class F0Predictor(object):
2
+ def compute_f0(self, wav, p_len):
3
+ """
4
+ input: wav:[signal_length]
5
+ p_len:int
6
+ output: f0:[signal_length//hop_length]
7
+ """
8
+ pass
9
+
10
+ def compute_f0_uv(self, wav, p_len):
11
+ """
12
+ input: wav:[signal_length]
13
+ p_len:int
14
+ output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
15
+ """
16
+ pass
lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2
+ import pyworld
3
+ import numpy as np
4
+
5
+
6
+ class HarvestF0Predictor(F0Predictor):
7
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
8
+ self.hop_length = hop_length
9
+ self.f0_min = f0_min
10
+ self.f0_max = f0_max
11
+ self.sampling_rate = sampling_rate
12
+
13
+ def interpolate_f0(self, f0):
14
+ """
15
+ 对F0进行插值处理
16
+ """
17
+
18
+ data = np.reshape(f0, (f0.size, 1))
19
+
20
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21
+ vuv_vector[data > 0.0] = 1.0
22
+ vuv_vector[data <= 0.0] = 0.0
23
+
24
+ ip_data = data
25
+
26
+ frame_number = data.size
27
+ last_value = 0.0
28
+ for i in range(frame_number):
29
+ if data[i] <= 0.0:
30
+ j = i + 1
31
+ for j in range(i + 1, frame_number):
32
+ if data[j] > 0.0:
33
+ break
34
+ if j < frame_number - 1:
35
+ if last_value > 0.0:
36
+ step = (data[j] - data[i - 1]) / float(j - i)
37
+ for k in range(i, j):
38
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
39
+ else:
40
+ for k in range(i, j):
41
+ ip_data[k] = data[j]
42
+ else:
43
+ for k in range(i, frame_number):
44
+ ip_data[k] = last_value
45
+ else:
46
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
47
+ last_value = data[i]
48
+
49
+ return ip_data[:, 0], vuv_vector[:, 0]
50
+
51
+ def resize_f0(self, x, target_len):
52
+ source = np.array(x)
53
+ source[source < 0.001] = np.nan
54
+ target = np.interp(
55
+ np.arange(0, len(source) * target_len, len(source)) / target_len,
56
+ np.arange(0, len(source)),
57
+ source,
58
+ )
59
+ res = np.nan_to_num(target)
60
+ return res
61
+
62
+ def compute_f0(self, wav, p_len=None):
63
+ if p_len is None:
64
+ p_len = wav.shape[0] // self.hop_length
65
+ f0, t = pyworld.harvest(
66
+ wav.astype(np.double),
67
+ fs=self.hop_length,
68
+ f0_ceil=self.f0_max,
69
+ f0_floor=self.f0_min,
70
+ frame_period=1000 * self.hop_length / self.sampling_rate,
71
+ )
72
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
73
+ return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
74
+
75
+ def compute_f0_uv(self, wav, p_len=None):
76
+ if p_len is None:
77
+ p_len = wav.shape[0] // self.hop_length
78
+ f0, t = pyworld.harvest(
79
+ wav.astype(np.double),
80
+ fs=self.sampling_rate,
81
+ f0_floor=self.f0_min,
82
+ f0_ceil=self.f0_max,
83
+ frame_period=1000 * self.hop_length / self.sampling_rate,
84
+ )
85
+ f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
86
+ return self.interpolate_f0(self.resize_f0(f0, p_len))
lib/infer_pack/modules/F0Predictor/PMF0Predictor.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2
+ import parselmouth
3
+ import numpy as np
4
+
5
+
6
+ class PMF0Predictor(F0Predictor):
7
+ def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
8
+ self.hop_length = hop_length
9
+ self.f0_min = f0_min
10
+ self.f0_max = f0_max
11
+ self.sampling_rate = sampling_rate
12
+
13
+ def interpolate_f0(self, f0):
14
+ """
15
+ 对F0进行插值处理
16
+ """
17
+
18
+ data = np.reshape(f0, (f0.size, 1))
19
+
20
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21
+ vuv_vector[data > 0.0] = 1.0
22
+ vuv_vector[data <= 0.0] = 0.0
23
+
24
+ ip_data = data
25
+
26
+ frame_number = data.size
27
+ last_value = 0.0
28
+ for i in range(frame_number):
29
+ if data[i] <= 0.0:
30
+ j = i + 1
31
+ for j in range(i + 1, frame_number):
32
+ if data[j] > 0.0:
33
+ break
34
+ if j < frame_number - 1:
35
+ if last_value > 0.0:
36
+ step = (data[j] - data[i - 1]) / float(j - i)
37
+ for k in range(i, j):
38
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
39
+ else:
40
+ for k in range(i, j):
41
+ ip_data[k] = data[j]
42
+ else:
43
+ for k in range(i, frame_number):
44
+ ip_data[k] = last_value
45
+ else:
46
+ ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
47
+ last_value = data[i]
48
+
49
+ return ip_data[:, 0], vuv_vector[:, 0]
50
+
51
+ def compute_f0(self, wav, p_len=None):
52
+ x = wav
53
+ if p_len is None:
54
+ p_len = x.shape[0] // self.hop_length
55
+ else:
56
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
57
+ time_step = self.hop_length / self.sampling_rate * 1000
58
+ f0 = (
59
+ parselmouth.Sound(x, self.sampling_rate)
60
+ .to_pitch_ac(
61
+ time_step=time_step / 1000,
62
+ voicing_threshold=0.6,
63
+ pitch_floor=self.f0_min,
64
+ pitch_ceiling=self.f0_max,
65
+ )
66
+ .selected_array["frequency"]
67
+ )
68
+
69
+ pad_size = (p_len - len(f0) + 1) // 2
70
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
71
+ f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
72
+ f0, uv = self.interpolate_f0(f0)
73
+ return f0
74
+
75
+ def compute_f0_uv(self, wav, p_len=None):
76
+ x = wav
77
+ if p_len is None:
78
+ p_len = x.shape[0] // self.hop_length
79
+ else:
80
+ assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
81
+ time_step = self.hop_length / self.sampling_rate * 1000
82
+ f0 = (
83
+ parselmouth.Sound(x, self.sampling_rate)
84
+ .to_pitch_ac(
85
+ time_step=time_step / 1000,
86
+ voicing_threshold=0.6,
87
+ pitch_floor=self.f0_min,
88
+ pitch_ceiling=self.f0_max,
89
+ )
90
+ .selected_array["frequency"]
91
+ )
92
+
93
+ pad_size = (p_len - len(f0) + 1) // 2
94
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
95
+ f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
96
+ f0, uv = self.interpolate_f0(f0)
97
+ return f0, uv
lib/infer_pack/modules/F0Predictor/__init__.py ADDED
File without changes
lib/infer_pack/onnx_inference.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import onnxruntime
2
+ import librosa
3
+ import numpy as np
4
+ import soundfile
5
+
6
+
7
+ class ContentVec:
8
+ def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
9
+ print("load model(s) from {}".format(vec_path))
10
+ if device == "cpu" or device is None:
11
+ providers = ["CPUExecutionProvider"]
12
+ elif device == "cuda":
13
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
14
+ elif device == "dml":
15
+ providers = ["DmlExecutionProvider"]
16
+ else:
17
+ raise RuntimeError("Unsportted Device")
18
+ self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
19
+
20
+ def __call__(self, wav):
21
+ return self.forward(wav)
22
+
23
+ def forward(self, wav):
24
+ feats = wav
25
+ if feats.ndim == 2: # double channels
26
+ feats = feats.mean(-1)
27
+ assert feats.ndim == 1, feats.ndim
28
+ feats = np.expand_dims(np.expand_dims(feats, 0), 0)
29
+ onnx_input = {self.model.get_inputs()[0].name: feats}
30
+ logits = self.model.run(None, onnx_input)[0]
31
+ return logits.transpose(0, 2, 1)
32
+
33
+
34
+ def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
35
+ if f0_predictor == "pm":
36
+ from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
37
+
38
+ f0_predictor_object = PMF0Predictor(
39
+ hop_length=hop_length, sampling_rate=sampling_rate
40
+ )
41
+ elif f0_predictor == "harvest":
42
+ from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import (
43
+ HarvestF0Predictor,
44
+ )
45
+
46
+ f0_predictor_object = HarvestF0Predictor(
47
+ hop_length=hop_length, sampling_rate=sampling_rate
48
+ )
49
+ elif f0_predictor == "dio":
50
+ from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
51
+
52
+ f0_predictor_object = DioF0Predictor(
53
+ hop_length=hop_length, sampling_rate=sampling_rate
54
+ )
55
+ else:
56
+ raise Exception("Unknown f0 predictor")
57
+ return f0_predictor_object
58
+
59
+
60
+ class OnnxRVC:
61
+ def __init__(
62
+ self,
63
+ model_path,
64
+ sr=40000,
65
+ hop_size=512,
66
+ vec_path="vec-768-layer-12",
67
+ device="cpu",
68
+ ):
69
+ vec_path = f"pretrained/{vec_path}.onnx"
70
+ self.vec_model = ContentVec(vec_path, device)
71
+ if device == "cpu" or device is None:
72
+ providers = ["CPUExecutionProvider"]
73
+ elif device == "cuda":
74
+ providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
75
+ elif device == "dml":
76
+ providers = ["DmlExecutionProvider"]
77
+ else:
78
+ raise RuntimeError("Unsportted Device")
79
+ self.model = onnxruntime.InferenceSession(model_path, providers=providers)
80
+ self.sampling_rate = sr
81
+ self.hop_size = hop_size
82
+
83
+ def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
84
+ onnx_input = {
85
+ self.model.get_inputs()[0].name: hubert,
86
+ self.model.get_inputs()[1].name: hubert_length,
87
+ self.model.get_inputs()[2].name: pitch,
88
+ self.model.get_inputs()[3].name: pitchf,
89
+ self.model.get_inputs()[4].name: ds,
90
+ self.model.get_inputs()[5].name: rnd,
91
+ }
92
+ return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
93
+
94
+ def inference(
95
+ self,
96
+ raw_path,
97
+ sid,
98
+ f0_method="dio",
99
+ f0_up_key=0,
100
+ pad_time=0.5,
101
+ cr_threshold=0.02,
102
+ ):
103
+ f0_min = 50
104
+ f0_max = 1100
105
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
106
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
107
+ f0_predictor = get_f0_predictor(
108
+ f0_method,
109
+ hop_length=self.hop_size,
110
+ sampling_rate=self.sampling_rate,
111
+ threshold=cr_threshold,
112
+ )
113
+ wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
114
+ org_length = len(wav)
115
+ if org_length / sr > 50.0:
116
+ raise RuntimeError("Reached Max Length")
117
+
118
+ wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
119
+ wav16k = wav16k
120
+
121
+ hubert = self.vec_model(wav16k)
122
+ hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
123
+ hubert_length = hubert.shape[1]
124
+
125
+ pitchf = f0_predictor.compute_f0(wav, hubert_length)
126
+ pitchf = pitchf * 2 ** (f0_up_key / 12)
127
+ pitch = pitchf.copy()
128
+ f0_mel = 1127 * np.log(1 + pitch / 700)
129
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
130
+ f0_mel_max - f0_mel_min
131
+ ) + 1
132
+ f0_mel[f0_mel <= 1] = 1
133
+ f0_mel[f0_mel > 255] = 255
134
+ pitch = np.rint(f0_mel).astype(np.int64)
135
+
136
+ pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
137
+ pitch = pitch.reshape(1, len(pitch))
138
+ ds = np.array([sid]).astype(np.int64)
139
+
140
+ rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
141
+ hubert_length = np.array([hubert_length]).astype(np.int64)
142
+
143
+ out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
144
+ out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
145
+ return out_wav[0:org_length]
lib/infer_pack/transforms.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(
13
+ inputs,
14
+ unnormalized_widths,
15
+ unnormalized_heights,
16
+ unnormalized_derivatives,
17
+ inverse=False,
18
+ tails=None,
19
+ tail_bound=1.0,
20
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
23
+ ):
24
+ if tails is None:
25
+ spline_fn = rational_quadratic_spline
26
+ spline_kwargs = {}
27
+ else:
28
+ spline_fn = unconstrained_rational_quadratic_spline
29
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
30
+
31
+ outputs, logabsdet = spline_fn(
32
+ inputs=inputs,
33
+ unnormalized_widths=unnormalized_widths,
34
+ unnormalized_heights=unnormalized_heights,
35
+ unnormalized_derivatives=unnormalized_derivatives,
36
+ inverse=inverse,
37
+ min_bin_width=min_bin_width,
38
+ min_bin_height=min_bin_height,
39
+ min_derivative=min_derivative,
40
+ **spline_kwargs
41
+ )
42
+ return outputs, logabsdet
43
+
44
+
45
+ def searchsorted(bin_locations, inputs, eps=1e-6):
46
+ bin_locations[..., -1] += eps
47
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
48
+
49
+
50
+ def unconstrained_rational_quadratic_spline(
51
+ inputs,
52
+ unnormalized_widths,
53
+ unnormalized_heights,
54
+ unnormalized_derivatives,
55
+ inverse=False,
56
+ tails="linear",
57
+ tail_bound=1.0,
58
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
59
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
60
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
61
+ ):
62
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
63
+ outside_interval_mask = ~inside_interval_mask
64
+
65
+ outputs = torch.zeros_like(inputs)
66
+ logabsdet = torch.zeros_like(inputs)
67
+
68
+ if tails == "linear":
69
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
70
+ constant = np.log(np.exp(1 - min_derivative) - 1)
71
+ unnormalized_derivatives[..., 0] = constant
72
+ unnormalized_derivatives[..., -1] = constant
73
+
74
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
75
+ logabsdet[outside_interval_mask] = 0
76
+ else:
77
+ raise RuntimeError("{} tails are not implemented.".format(tails))
78
+
79
+ (
80
+ outputs[inside_interval_mask],
81
+ logabsdet[inside_interval_mask],
82
+ ) = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound,
89
+ right=tail_bound,
90
+ bottom=-tail_bound,
91
+ top=tail_bound,
92
+ min_bin_width=min_bin_width,
93
+ min_bin_height=min_bin_height,
94
+ min_derivative=min_derivative,
95
+ )
96
+
97
+ return outputs, logabsdet
98
+
99
+
100
+ def rational_quadratic_spline(
101
+ inputs,
102
+ unnormalized_widths,
103
+ unnormalized_heights,
104
+ unnormalized_derivatives,
105
+ inverse=False,
106
+ left=0.0,
107
+ right=1.0,
108
+ bottom=0.0,
109
+ top=1.0,
110
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
111
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
112
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
113
+ ):
114
+ if torch.min(inputs) < left or torch.max(inputs) > right:
115
+ raise ValueError("Input to a transform is not within its domain")
116
+
117
+ num_bins = unnormalized_widths.shape[-1]
118
+
119
+ if min_bin_width * num_bins > 1.0:
120
+ raise ValueError("Minimal bin width too large for the number of bins")
121
+ if min_bin_height * num_bins > 1.0:
122
+ raise ValueError("Minimal bin height too large for the number of bins")
123
+
124
+ widths = F.softmax(unnormalized_widths, dim=-1)
125
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
126
+ cumwidths = torch.cumsum(widths, dim=-1)
127
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
128
+ cumwidths = (right - left) * cumwidths + left
129
+ cumwidths[..., 0] = left
130
+ cumwidths[..., -1] = right
131
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
132
+
133
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
134
+
135
+ heights = F.softmax(unnormalized_heights, dim=-1)
136
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
137
+ cumheights = torch.cumsum(heights, dim=-1)
138
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
139
+ cumheights = (top - bottom) * cumheights + bottom
140
+ cumheights[..., 0] = bottom
141
+ cumheights[..., -1] = top
142
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
143
+
144
+ if inverse:
145
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
146
+ else:
147
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
148
+
149
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
150
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
151
+
152
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
153
+ delta = heights / widths
154
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
155
+
156
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
157
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
158
+
159
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
160
+
161
+ if inverse:
162
+ a = (inputs - input_cumheights) * (
163
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
164
+ ) + input_heights * (input_delta - input_derivatives)
165
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
166
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
167
+ )
168
+ c = -input_delta * (inputs - input_cumheights)
169
+
170
+ discriminant = b.pow(2) - 4 * a * c
171
+ assert (discriminant >= 0).all()
172
+
173
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
174
+ outputs = root * input_bin_widths + input_cumwidths
175
+
176
+ theta_one_minus_theta = root * (1 - root)
177
+ denominator = input_delta + (
178
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
179
+ * theta_one_minus_theta
180
+ )
181
+ derivative_numerator = input_delta.pow(2) * (
182
+ input_derivatives_plus_one * root.pow(2)
183
+ + 2 * input_delta * theta_one_minus_theta
184
+ + input_derivatives * (1 - root).pow(2)
185
+ )
186
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
187
+
188
+ return outputs, -logabsdet
189
+ else:
190
+ theta = (inputs - input_cumwidths) / input_bin_widths
191
+ theta_one_minus_theta = theta * (1 - theta)
192
+
193
+ numerator = input_heights * (
194
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
195
+ )
196
+ denominator = input_delta + (
197
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
198
+ * theta_one_minus_theta
199
+ )
200
+ outputs = input_cumheights + numerator / denominator
201
+
202
+ derivative_numerator = input_delta.pow(2) * (
203
+ input_derivatives_plus_one * theta.pow(2)
204
+ + 2 * input_delta * theta_one_minus_theta
205
+ + input_derivatives * (1 - theta).pow(2)
206
+ )
207
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
208
+
209
+ return outputs, logabsdet
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ wheel
2
+ setuptools
3
+ ffmpeg
4
+ numba==0.56.4
5
+ numpy==1.23.5
6
+ scipy==1.9.3
7
+ librosa==0.9.1
8
+ fairseq==0.12.2
9
+ faiss-cpu==1.7.3
10
+ gradio==3.40.1
11
+ pyworld==0.3.2
12
+ soundfile>=0.12.1
13
+ praat-parselmouth>=0.4.2
14
+ httpx==0.23.0
15
+ tensorboard
16
+ tensorboardX
17
+ torchcrepe
18
+ onnxruntime-gpu
19
+ demucs
20
+ edge-tts
21
+ yt_dlp
rmvpe.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ed4719f59085d1affc5d81354c70828c740584f2d24e782523345a6a278962
3
+ size 181189687
rmvpe.py ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys, torch, numpy as np, traceback, pdb
2
+ import torch.nn as nn
3
+ from time import time as ttime
4
+ import torch.nn.functional as F
5
+
6
+
7
+ class BiGRU(nn.Module):
8
+ def __init__(self, input_features, hidden_features, num_layers):
9
+ super(BiGRU, self).__init__()
10
+ self.gru = nn.GRU(
11
+ input_features,
12
+ hidden_features,
13
+ num_layers=num_layers,
14
+ batch_first=True,
15
+ bidirectional=True,
16
+ )
17
+
18
+ def forward(self, x):
19
+ return self.gru(x)[0]
20
+
21
+
22
+ class ConvBlockRes(nn.Module):
23
+ def __init__(self, in_channels, out_channels, momentum=0.01):
24
+ super(ConvBlockRes, self).__init__()
25
+ self.conv = nn.Sequential(
26
+ nn.Conv2d(
27
+ in_channels=in_channels,
28
+ out_channels=out_channels,
29
+ kernel_size=(3, 3),
30
+ stride=(1, 1),
31
+ padding=(1, 1),
32
+ bias=False,
33
+ ),
34
+ nn.BatchNorm2d(out_channels, momentum=momentum),
35
+ nn.ReLU(),
36
+ nn.Conv2d(
37
+ in_channels=out_channels,
38
+ out_channels=out_channels,
39
+ kernel_size=(3, 3),
40
+ stride=(1, 1),
41
+ padding=(1, 1),
42
+ bias=False,
43
+ ),
44
+ nn.BatchNorm2d(out_channels, momentum=momentum),
45
+ nn.ReLU(),
46
+ )
47
+ if in_channels != out_channels:
48
+ self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
49
+ self.is_shortcut = True
50
+ else:
51
+ self.is_shortcut = False
52
+
53
+ def forward(self, x):
54
+ if self.is_shortcut:
55
+ return self.conv(x) + self.shortcut(x)
56
+ else:
57
+ return self.conv(x) + x
58
+
59
+
60
+ class Encoder(nn.Module):
61
+ def __init__(
62
+ self,
63
+ in_channels,
64
+ in_size,
65
+ n_encoders,
66
+ kernel_size,
67
+ n_blocks,
68
+ out_channels=16,
69
+ momentum=0.01,
70
+ ):
71
+ super(Encoder, self).__init__()
72
+ self.n_encoders = n_encoders
73
+ self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
74
+ self.layers = nn.ModuleList()
75
+ self.latent_channels = []
76
+ for i in range(self.n_encoders):
77
+ self.layers.append(
78
+ ResEncoderBlock(
79
+ in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
80
+ )
81
+ )
82
+ self.latent_channels.append([out_channels, in_size])
83
+ in_channels = out_channels
84
+ out_channels *= 2
85
+ in_size //= 2
86
+ self.out_size = in_size
87
+ self.out_channel = out_channels
88
+
89
+ def forward(self, x):
90
+ concat_tensors = []
91
+ x = self.bn(x)
92
+ for i in range(self.n_encoders):
93
+ _, x = self.layers[i](x)
94
+ concat_tensors.append(_)
95
+ return x, concat_tensors
96
+
97
+
98
+ class ResEncoderBlock(nn.Module):
99
+ def __init__(
100
+ self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
101
+ ):
102
+ super(ResEncoderBlock, self).__init__()
103
+ self.n_blocks = n_blocks
104
+ self.conv = nn.ModuleList()
105
+ self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
106
+ for i in range(n_blocks - 1):
107
+ self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
108
+ self.kernel_size = kernel_size
109
+ if self.kernel_size is not None:
110
+ self.pool = nn.AvgPool2d(kernel_size=kernel_size)
111
+
112
+ def forward(self, x):
113
+ for i in range(self.n_blocks):
114
+ x = self.conv[i](x)
115
+ if self.kernel_size is not None:
116
+ return x, self.pool(x)
117
+ else:
118
+ return x
119
+
120
+
121
+ class Intermediate(nn.Module): #
122
+ def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
123
+ super(Intermediate, self).__init__()
124
+ self.n_inters = n_inters
125
+ self.layers = nn.ModuleList()
126
+ self.layers.append(
127
+ ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
128
+ )
129
+ for i in range(self.n_inters - 1):
130
+ self.layers.append(
131
+ ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
132
+ )
133
+
134
+ def forward(self, x):
135
+ for i in range(self.n_inters):
136
+ x = self.layers[i](x)
137
+ return x
138
+
139
+
140
+ class ResDecoderBlock(nn.Module):
141
+ def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
142
+ super(ResDecoderBlock, self).__init__()
143
+ out_padding = (0, 1) if stride == (1, 2) else (1, 1)
144
+ self.n_blocks = n_blocks
145
+ self.conv1 = nn.Sequential(
146
+ nn.ConvTranspose2d(
147
+ in_channels=in_channels,
148
+ out_channels=out_channels,
149
+ kernel_size=(3, 3),
150
+ stride=stride,
151
+ padding=(1, 1),
152
+ output_padding=out_padding,
153
+ bias=False,
154
+ ),
155
+ nn.BatchNorm2d(out_channels, momentum=momentum),
156
+ nn.ReLU(),
157
+ )
158
+ self.conv2 = nn.ModuleList()
159
+ self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
160
+ for i in range(n_blocks - 1):
161
+ self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
162
+
163
+ def forward(self, x, concat_tensor):
164
+ x = self.conv1(x)
165
+ x = torch.cat((x, concat_tensor), dim=1)
166
+ for i in range(self.n_blocks):
167
+ x = self.conv2[i](x)
168
+ return x
169
+
170
+
171
+ class Decoder(nn.Module):
172
+ def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
173
+ super(Decoder, self).__init__()
174
+ self.layers = nn.ModuleList()
175
+ self.n_decoders = n_decoders
176
+ for i in range(self.n_decoders):
177
+ out_channels = in_channels // 2
178
+ self.layers.append(
179
+ ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
180
+ )
181
+ in_channels = out_channels
182
+
183
+ def forward(self, x, concat_tensors):
184
+ for i in range(self.n_decoders):
185
+ x = self.layers[i](x, concat_tensors[-1 - i])
186
+ return x
187
+
188
+
189
+ class DeepUnet(nn.Module):
190
+ def __init__(
191
+ self,
192
+ kernel_size,
193
+ n_blocks,
194
+ en_de_layers=5,
195
+ inter_layers=4,
196
+ in_channels=1,
197
+ en_out_channels=16,
198
+ ):
199
+ super(DeepUnet, self).__init__()
200
+ self.encoder = Encoder(
201
+ in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
202
+ )
203
+ self.intermediate = Intermediate(
204
+ self.encoder.out_channel // 2,
205
+ self.encoder.out_channel,
206
+ inter_layers,
207
+ n_blocks,
208
+ )
209
+ self.decoder = Decoder(
210
+ self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
211
+ )
212
+
213
+ def forward(self, x):
214
+ x, concat_tensors = self.encoder(x)
215
+ x = self.intermediate(x)
216
+ x = self.decoder(x, concat_tensors)
217
+ return x
218
+
219
+
220
+ class E2E(nn.Module):
221
+ def __init__(
222
+ self,
223
+ n_blocks,
224
+ n_gru,
225
+ kernel_size,
226
+ en_de_layers=5,
227
+ inter_layers=4,
228
+ in_channels=1,
229
+ en_out_channels=16,
230
+ ):
231
+ super(E2E, self).__init__()
232
+ self.unet = DeepUnet(
233
+ kernel_size,
234
+ n_blocks,
235
+ en_de_layers,
236
+ inter_layers,
237
+ in_channels,
238
+ en_out_channels,
239
+ )
240
+ self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
241
+ if n_gru:
242
+ self.fc = nn.Sequential(
243
+ BiGRU(3 * 128, 256, n_gru),
244
+ nn.Linear(512, 360),
245
+ nn.Dropout(0.25),
246
+ nn.Sigmoid(),
247
+ )
248
+ else:
249
+ self.fc = nn.Sequential(
250
+ nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
251
+ )
252
+
253
+ def forward(self, mel):
254
+ mel = mel.transpose(-1, -2).unsqueeze(1)
255
+ x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
256
+ x = self.fc(x)
257
+ return x
258
+
259
+
260
+ from librosa.filters import mel
261
+
262
+
263
+ class MelSpectrogram(torch.nn.Module):
264
+ def __init__(
265
+ self,
266
+ is_half,
267
+ n_mel_channels,
268
+ sampling_rate,
269
+ win_length,
270
+ hop_length,
271
+ n_fft=None,
272
+ mel_fmin=0,
273
+ mel_fmax=None,
274
+ clamp=1e-5,
275
+ ):
276
+ super().__init__()
277
+ n_fft = win_length if n_fft is None else n_fft
278
+ self.hann_window = {}
279
+ mel_basis = mel(
280
+ sr=sampling_rate,
281
+ n_fft=n_fft,
282
+ n_mels=n_mel_channels,
283
+ fmin=mel_fmin,
284
+ fmax=mel_fmax,
285
+ htk=True,
286
+ )
287
+ mel_basis = torch.from_numpy(mel_basis).float()
288
+ self.register_buffer("mel_basis", mel_basis)
289
+ self.n_fft = win_length if n_fft is None else n_fft
290
+ self.hop_length = hop_length
291
+ self.win_length = win_length
292
+ self.sampling_rate = sampling_rate
293
+ self.n_mel_channels = n_mel_channels
294
+ self.clamp = clamp
295
+ self.is_half = is_half
296
+
297
+ def forward(self, audio, keyshift=0, speed=1, center=True):
298
+ factor = 2 ** (keyshift / 12)
299
+ n_fft_new = int(np.round(self.n_fft * factor))
300
+ win_length_new = int(np.round(self.win_length * factor))
301
+ hop_length_new = int(np.round(self.hop_length * speed))
302
+ keyshift_key = str(keyshift) + "_" + str(audio.device)
303
+ if keyshift_key not in self.hann_window:
304
+ self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
305
+ audio.device
306
+ )
307
+ fft = torch.stft(
308
+ audio,
309
+ n_fft=n_fft_new,
310
+ hop_length=hop_length_new,
311
+ win_length=win_length_new,
312
+ window=self.hann_window[keyshift_key],
313
+ center=center,
314
+ return_complex=True,
315
+ )
316
+ magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
317
+ if keyshift != 0:
318
+ size = self.n_fft // 2 + 1
319
+ resize = magnitude.size(1)
320
+ if resize < size:
321
+ magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
322
+ magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
323
+ mel_output = torch.matmul(self.mel_basis, magnitude)
324
+ if self.is_half == True:
325
+ mel_output = mel_output.half()
326
+ log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
327
+ return log_mel_spec
328
+
329
+
330
+ class RMVPE:
331
+ def __init__(self, model_path, is_half, device=None):
332
+ self.resample_kernel = {}
333
+ model = E2E(4, 1, (2, 2))
334
+ ckpt = torch.load(model_path, map_location="cpu")
335
+ model.load_state_dict(ckpt)
336
+ model.eval()
337
+ if is_half == True:
338
+ model = model.half()
339
+ self.model = model
340
+ self.resample_kernel = {}
341
+ self.is_half = is_half
342
+ if device is None:
343
+ device = "cuda" if torch.cuda.is_available() else "cpu"
344
+ self.device = device
345
+ self.mel_extractor = MelSpectrogram(
346
+ is_half, 128, 16000, 1024, 160, None, 30, 8000
347
+ ).to(device)
348
+ self.model = self.model.to(device)
349
+ cents_mapping = 20 * np.arange(360) + 1997.3794084376191
350
+ self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
351
+
352
+ def mel2hidden(self, mel):
353
+ with torch.no_grad():
354
+ n_frames = mel.shape[-1]
355
+ mel = F.pad(
356
+ mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
357
+ )
358
+ hidden = self.model(mel)
359
+ return hidden[:, :n_frames]
360
+
361
+ def decode(self, hidden, thred=0.03):
362
+ cents_pred = self.to_local_average_cents(hidden, thred=thred)
363
+ f0 = 10 * (2 ** (cents_pred / 1200))
364
+ f0[f0 == 10] = 0
365
+ # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
366
+ return f0
367
+
368
+ def infer_from_audio(self, audio, thred=0.03):
369
+ audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
370
+ # torch.cuda.synchronize()
371
+ # t0=ttime()
372
+ mel = self.mel_extractor(audio, center=True)
373
+ # torch.cuda.synchronize()
374
+ # t1=ttime()
375
+ hidden = self.mel2hidden(mel)
376
+ # torch.cuda.synchronize()
377
+ # t2=ttime()
378
+ hidden = hidden.squeeze(0).cpu().numpy()
379
+ if self.is_half == True:
380
+ hidden = hidden.astype("float32")
381
+ f0 = self.decode(hidden, thred=thred)
382
+ # torch.cuda.synchronize()
383
+ # t3=ttime()
384
+ # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
385
+ return f0
386
+
387
+ def to_local_average_cents(self, salience, thred=0.05):
388
+ # t0 = ttime()
389
+ center = np.argmax(salience, axis=1) # 帧长#index
390
+ salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
391
+ # t1 = ttime()
392
+ center += 4
393
+ todo_salience = []
394
+ todo_cents_mapping = []
395
+ starts = center - 4
396
+ ends = center + 5
397
+ for idx in range(salience.shape[0]):
398
+ todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
399
+ todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
400
+ # t2 = ttime()
401
+ todo_salience = np.array(todo_salience) # 帧长,9
402
+ todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
403
+ product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
404
+ weight_sum = np.sum(todo_salience, 1) # 帧长
405
+ devided = product_sum / weight_sum # 帧长
406
+ # t3 = ttime()
407
+ maxx = np.max(salience, axis=1) # 帧长
408
+ devided[maxx <= thred] = 0
409
+ # t4 = ttime()
410
+ # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
411
+ return devided
412
+
413
+
414
+ # if __name__ == '__main__':
415
+ # audio, sampling_rate = sf.read("卢本伟语录~1.wav")
416
+ # if len(audio.shape) > 1:
417
+ # audio = librosa.to_mono(audio.transpose(1, 0))
418
+ # audio_bak = audio.copy()
419
+ # if sampling_rate != 16000:
420
+ # audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
421
+ # model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
422
+ # thred = 0.03 # 0.01
423
+ # device = 'cuda' if torch.cuda.is_available() else 'cpu'
424
+ # rmvpe = RMVPE(model_path,is_half=False, device=device)
425
+ # t0=ttime()
426
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
427
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
428
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
429
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
430
+ # f0 = rmvpe.infer_from_audio(audio, thred=thred)
431
+ # t1=ttime()
432
+ # print(f0.shape,t1-t0)
vc_infer_pipeline.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np, parselmouth, torch, pdb, sys, os
2
+ from time import time as ttime
3
+ import torch.nn.functional as F
4
+ import scipy.signal as signal
5
+ import pyworld, os, traceback, faiss, librosa, torchcrepe
6
+ from scipy import signal
7
+ from functools import lru_cache
8
+
9
+ now_dir = os.getcwd()
10
+ sys.path.append(now_dir)
11
+
12
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
13
+
14
+ input_audio_path2wav = {}
15
+
16
+
17
+ @lru_cache
18
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
19
+ audio = input_audio_path2wav[input_audio_path]
20
+ f0, t = pyworld.harvest(
21
+ audio,
22
+ fs=fs,
23
+ f0_ceil=f0max,
24
+ f0_floor=f0min,
25
+ frame_period=frame_period,
26
+ )
27
+ f0 = pyworld.stonemask(audio, f0, t, fs)
28
+ return f0
29
+
30
+
31
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
32
+ # print(data1.max(),data2.max())
33
+ rms1 = librosa.feature.rms(
34
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
35
+ ) # 每半秒一个点
36
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
37
+ rms1 = torch.from_numpy(rms1)
38
+ rms1 = F.interpolate(
39
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
40
+ ).squeeze()
41
+ rms2 = torch.from_numpy(rms2)
42
+ rms2 = F.interpolate(
43
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
44
+ ).squeeze()
45
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
46
+ data2 *= (
47
+ torch.pow(rms1, torch.tensor(1 - rate))
48
+ * torch.pow(rms2, torch.tensor(rate - 1))
49
+ ).numpy()
50
+ return data2
51
+
52
+
53
+ class VC(object):
54
+ def __init__(self, tgt_sr, config):
55
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
56
+ config.x_pad,
57
+ config.x_query,
58
+ config.x_center,
59
+ config.x_max,
60
+ config.is_half,
61
+ )
62
+ self.sr = 16000 # hubert输入采样率
63
+ self.window = 160 # 每帧点数
64
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
65
+ self.t_pad_tgt = tgt_sr * self.x_pad
66
+ self.t_pad2 = self.t_pad * 2
67
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
68
+ self.t_center = self.sr * self.x_center # 查询切点位置
69
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
70
+ self.device = config.device
71
+
72
+ def get_f0(
73
+ self,
74
+ input_audio_path,
75
+ x,
76
+ p_len,
77
+ f0_up_key,
78
+ f0_method,
79
+ filter_radius,
80
+ inp_f0=None,
81
+ ):
82
+ global input_audio_path2wav
83
+ time_step = self.window / self.sr * 1000
84
+ f0_min = 50
85
+ f0_max = 1100
86
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
87
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
88
+ if f0_method == "pm":
89
+ f0 = (
90
+ parselmouth.Sound(x, self.sr)
91
+ .to_pitch_ac(
92
+ time_step=time_step / 1000,
93
+ voicing_threshold=0.6,
94
+ pitch_floor=f0_min,
95
+ pitch_ceiling=f0_max,
96
+ )
97
+ .selected_array["frequency"]
98
+ )
99
+ pad_size = (p_len - len(f0) + 1) // 2
100
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
101
+ f0 = np.pad(
102
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
103
+ )
104
+ elif f0_method == "harvest":
105
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
106
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
107
+ if filter_radius > 2:
108
+ f0 = signal.medfilt(f0, 3)
109
+ elif f0_method == "crepe":
110
+ model = "full"
111
+ # Pick a batch size that doesn't cause memory errors on your gpu
112
+ batch_size = 512
113
+ # Compute pitch using first gpu
114
+ audio = torch.tensor(np.copy(x))[None].float()
115
+ f0, pd = torchcrepe.predict(
116
+ audio,
117
+ self.sr,
118
+ self.window,
119
+ f0_min,
120
+ f0_max,
121
+ model,
122
+ batch_size=batch_size,
123
+ device=self.device,
124
+ return_periodicity=True,
125
+ )
126
+ pd = torchcrepe.filter.median(pd, 3)
127
+ f0 = torchcrepe.filter.mean(f0, 3)
128
+ f0[pd < 0.1] = 0
129
+ f0 = f0[0].cpu().numpy()
130
+ elif f0_method == "rmvpe":
131
+ if hasattr(self, "model_rmvpe") == False:
132
+ from rmvpe import RMVPE
133
+
134
+ print("loading rmvpe model")
135
+ self.model_rmvpe = RMVPE(
136
+ "rmvpe.pt", is_half=self.is_half, device=self.device
137
+ )
138
+ f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
139
+ f0 *= pow(2, f0_up_key / 12)
140
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
141
+ tf0 = self.sr // self.window # 每秒f0点数
142
+ if inp_f0 is not None:
143
+ delta_t = np.round(
144
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
145
+ ).astype("int16")
146
+ replace_f0 = np.interp(
147
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
148
+ )
149
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
150
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
151
+ :shape
152
+ ]
153
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
154
+ f0bak = f0.copy()
155
+ f0_mel = 1127 * np.log(1 + f0 / 700)
156
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
157
+ f0_mel_max - f0_mel_min
158
+ ) + 1
159
+ f0_mel[f0_mel <= 1] = 1
160
+ f0_mel[f0_mel > 255] = 255
161
+ f0_coarse = np.rint(f0_mel).astype(np.int)
162
+ return f0_coarse, f0bak # 1-0
163
+
164
+ def vc(
165
+ self,
166
+ model,
167
+ net_g,
168
+ sid,
169
+ audio0,
170
+ pitch,
171
+ pitchf,
172
+ times,
173
+ index,
174
+ big_npy,
175
+ index_rate,
176
+ version,
177
+ protect,
178
+ ): # ,file_index,file_big_npy
179
+ feats = torch.from_numpy(audio0)
180
+ if self.is_half:
181
+ feats = feats.half()
182
+ else:
183
+ feats = feats.float()
184
+ if feats.dim() == 2: # double channels
185
+ feats = feats.mean(-1)
186
+ assert feats.dim() == 1, feats.dim()
187
+ feats = feats.view(1, -1)
188
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
189
+
190
+ inputs = {
191
+ "source": feats.to(self.device),
192
+ "padding_mask": padding_mask,
193
+ "output_layer": 9 if version == "v1" else 12,
194
+ }
195
+ t0 = ttime()
196
+ with torch.no_grad():
197
+ logits = model.extract_features(**inputs)
198
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
199
+ if protect < 0.5 and pitch != None and pitchf != None:
200
+ feats0 = feats.clone()
201
+ if (
202
+ isinstance(index, type(None)) == False
203
+ and isinstance(big_npy, type(None)) == False
204
+ and index_rate != 0
205
+ ):
206
+ npy = feats[0].cpu().numpy()
207
+ if self.is_half:
208
+ npy = npy.astype("float32")
209
+
210
+ # _, I = index.search(npy, 1)
211
+ # npy = big_npy[I.squeeze()]
212
+
213
+ score, ix = index.search(npy, k=8)
214
+ weight = np.square(1 / score)
215
+ weight /= weight.sum(axis=1, keepdims=True)
216
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
217
+
218
+ if self.is_half:
219
+ npy = npy.astype("float16")
220
+ feats = (
221
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
222
+ + (1 - index_rate) * feats
223
+ )
224
+
225
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
226
+ if protect < 0.5 and pitch != None and pitchf != None:
227
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
228
+ 0, 2, 1
229
+ )
230
+ t1 = ttime()
231
+ p_len = audio0.shape[0] // self.window
232
+ if feats.shape[1] < p_len:
233
+ p_len = feats.shape[1]
234
+ if pitch != None and pitchf != None:
235
+ pitch = pitch[:, :p_len]
236
+ pitchf = pitchf[:, :p_len]
237
+
238
+ if protect < 0.5 and pitch != None and pitchf != None:
239
+ pitchff = pitchf.clone()
240
+ pitchff[pitchf > 0] = 1
241
+ pitchff[pitchf < 1] = protect
242
+ pitchff = pitchff.unsqueeze(-1)
243
+ feats = feats * pitchff + feats0 * (1 - pitchff)
244
+ feats = feats.to(feats0.dtype)
245
+ p_len = torch.tensor([p_len], device=self.device).long()
246
+ with torch.no_grad():
247
+ if pitch != None and pitchf != None:
248
+ audio1 = (
249
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
250
+ .data.cpu()
251
+ .float()
252
+ .numpy()
253
+ )
254
+ else:
255
+ audio1 = (
256
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
257
+ )
258
+ del feats, p_len, padding_mask
259
+ if torch.cuda.is_available():
260
+ torch.cuda.empty_cache()
261
+ t2 = ttime()
262
+ times[0] += t1 - t0
263
+ times[2] += t2 - t1
264
+ return audio1
265
+
266
+ def pipeline(
267
+ self,
268
+ model,
269
+ net_g,
270
+ sid,
271
+ audio,
272
+ input_audio_path,
273
+ times,
274
+ f0_up_key,
275
+ f0_method,
276
+ file_index,
277
+ # file_big_npy,
278
+ index_rate,
279
+ if_f0,
280
+ filter_radius,
281
+ tgt_sr,
282
+ resample_sr,
283
+ rms_mix_rate,
284
+ version,
285
+ protect,
286
+ f0_file=None,
287
+ ):
288
+ if (
289
+ file_index != ""
290
+ # and file_big_npy != ""
291
+ # and os.path.exists(file_big_npy) == True
292
+ and os.path.exists(file_index) == True
293
+ and index_rate != 0
294
+ ):
295
+ try:
296
+ index = faiss.read_index(file_index)
297
+ # big_npy = np.load(file_big_npy)
298
+ big_npy = index.reconstruct_n(0, index.ntotal)
299
+ except:
300
+ traceback.print_exc()
301
+ index = big_npy = None
302
+ else:
303
+ index = big_npy = None
304
+ audio = signal.filtfilt(bh, ah, audio)
305
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
306
+ opt_ts = []
307
+ if audio_pad.shape[0] > self.t_max:
308
+ audio_sum = np.zeros_like(audio)
309
+ for i in range(self.window):
310
+ audio_sum += audio_pad[i : i - self.window]
311
+ for t in range(self.t_center, audio.shape[0], self.t_center):
312
+ opt_ts.append(
313
+ t
314
+ - self.t_query
315
+ + np.where(
316
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
317
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
318
+ )[0][0]
319
+ )
320
+ s = 0
321
+ audio_opt = []
322
+ t = None
323
+ t1 = ttime()
324
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
325
+ p_len = audio_pad.shape[0] // self.window
326
+ inp_f0 = None
327
+ if hasattr(f0_file, "name") == True:
328
+ try:
329
+ with open(f0_file.name, "r") as f:
330
+ lines = f.read().strip("\n").split("\n")
331
+ inp_f0 = []
332
+ for line in lines:
333
+ inp_f0.append([float(i) for i in line.split(",")])
334
+ inp_f0 = np.array(inp_f0, dtype="float32")
335
+ except:
336
+ traceback.print_exc()
337
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
338
+ pitch, pitchf = None, None
339
+ if if_f0 == 1:
340
+ pitch, pitchf = self.get_f0(
341
+ input_audio_path,
342
+ audio_pad,
343
+ p_len,
344
+ f0_up_key,
345
+ f0_method,
346
+ filter_radius,
347
+ inp_f0,
348
+ )
349
+ pitch = pitch[:p_len]
350
+ pitchf = pitchf[:p_len]
351
+ if self.device == "mps":
352
+ pitchf = pitchf.astype(np.float32)
353
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
354
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
355
+ t2 = ttime()
356
+ times[1] += t2 - t1
357
+ for t in opt_ts:
358
+ t = t // self.window * self.window
359
+ if if_f0 == 1:
360
+ audio_opt.append(
361
+ self.vc(
362
+ model,
363
+ net_g,
364
+ sid,
365
+ audio_pad[s : t + self.t_pad2 + self.window],
366
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
367
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
368
+ times,
369
+ index,
370
+ big_npy,
371
+ index_rate,
372
+ version,
373
+ protect,
374
+ )[self.t_pad_tgt : -self.t_pad_tgt]
375
+ )
376
+ else:
377
+ audio_opt.append(
378
+ self.vc(
379
+ model,
380
+ net_g,
381
+ sid,
382
+ audio_pad[s : t + self.t_pad2 + self.window],
383
+ None,
384
+ None,
385
+ times,
386
+ index,
387
+ big_npy,
388
+ index_rate,
389
+ version,
390
+ protect,
391
+ )[self.t_pad_tgt : -self.t_pad_tgt]
392
+ )
393
+ s = t
394
+ if if_f0 == 1:
395
+ audio_opt.append(
396
+ self.vc(
397
+ model,
398
+ net_g,
399
+ sid,
400
+ audio_pad[t:],
401
+ pitch[:, t // self.window :] if t is not None else pitch,
402
+ pitchf[:, t // self.window :] if t is not None else pitchf,
403
+ times,
404
+ index,
405
+ big_npy,
406
+ index_rate,
407
+ version,
408
+ protect,
409
+ )[self.t_pad_tgt : -self.t_pad_tgt]
410
+ )
411
+ else:
412
+ audio_opt.append(
413
+ self.vc(
414
+ model,
415
+ net_g,
416
+ sid,
417
+ audio_pad[t:],
418
+ None,
419
+ None,
420
+ times,
421
+ index,
422
+ big_npy,
423
+ index_rate,
424
+ version,
425
+ protect,
426
+ )[self.t_pad_tgt : -self.t_pad_tgt]
427
+ )
428
+ audio_opt = np.concatenate(audio_opt)
429
+ if rms_mix_rate != 1:
430
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
431
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
432
+ audio_opt = librosa.resample(
433
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
434
+ )
435
+ audio_max = np.abs(audio_opt).max() / 0.99
436
+ max_int16 = 32768
437
+ if audio_max > 1:
438
+ max_int16 /= audio_max
439
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
440
+ del pitch, pitchf, sid
441
+ if torch.cuda.is_available():
442
+ torch.cuda.empty_cache()
443
+ return audio_opt
vocal_isolation/constants.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Standard
2
+ import os
3
+
4
+ # Third-party
5
+ import torch
6
+
7
+ # Global Variables
8
+ COMPUTATION_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
9
+ EXECUTION_PROVIDER_LIST = ["CUDAExecutionProvider", "CPUExecutionProvider"]
10
+ ONNX_MODEL_PATH = "./vocal_isolation/pretrained_models/Kim_Vocal.onnx"
11
+ PRETRAINED_MODELS_DIRECTORY = "./vocal_isolation/pretrained_models"
12
+ INPUT_FOLDER = "./dl_audio"
13
+ OUTPUT_FOLDER = "./output/mdx_net_kim_vocal/audio"
vocal_isolation/loader.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Standard Library
2
+ import os
3
+
4
+ # Explicit Typing
5
+ from typing import Tuple
6
+ from numpy import ndarray
7
+
8
+ # Third-party
9
+ import librosa
10
+ import torch
11
+
12
+
13
+ class Loader:
14
+ """Loading sound files into a usable format for pytorch"""
15
+
16
+ def __init__(self, INPUT_FOLDER, OUTPUT_FOLDER):
17
+ self.input = INPUT_FOLDER
18
+ self.output = OUTPUT_FOLDER
19
+
20
+ def load_wav(self, name) -> Tuple[torch.Tensor, int]:
21
+ music_array, samplerate = librosa.load(
22
+ os.path.join(self.input, name + ".wav"), mono=False, sr=44100
23
+ )
24
+ music_tensor = torch.tensor(music_array, dtype=torch.float32)
25
+ return music_tensor, samplerate
26
+
27
+ def prepare_uploaded_file(self, uploaded_file) -> Tuple[torch.Tensor, int]:
28
+ music_array, samplerate = librosa.load(uploaded_file, mono=False, sr=44100)
29
+
30
+ music_tensor = torch.tensor(music_array, dtype=torch.float32)
31
+
32
+ return music_tensor, samplerate
vocal_isolation/models/kimvocal.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Third Party Imports
2
+ import torch
3
+ import onnxruntime as ort
4
+
5
+ # Local Imports
6
+ from vocal_isolation.models.mdx_net import Conv_TDF_net_trimm
7
+
8
+ # Global Variables
9
+ from vocal_isolation.constants import EXECUTION_PROVIDER_LIST, COMPUTATION_DEVICE
10
+ from vocal_isolation.constants import ONNX_MODEL_PATH, PRETRAINED_MODELS_DIRECTORY
11
+
12
+
13
+ class KimVocal:
14
+ def __init__(self):
15
+ self.models = [
16
+ Conv_TDF_net_trimm(
17
+ ONNX_MODEL_PATH, use_onnx=True, target_name='vocals',
18
+ L=11, l=3, g=48, bn=8, bias=False,
19
+ dim_f=11, dim_t=8
20
+ )
21
+ ]
22
+
23
+ def demix_both(self, music_tensor, sample_rate):
24
+ """
25
+ Isolating vocals AND instrumental using an ONNX model.
26
+ Assuming the audio is loaded correctly at 41000hz samplerate.
27
+
28
+ Args:
29
+ music_tensor (torch.Tensor): Input tensor.
30
+ model (torch.nn): Model used for inferring.
31
+
32
+ Returns:
33
+ torch.Tensor: Output tensor after passing through the network.
34
+ """
35
+ number_of_samples = music_tensor.shape[1]
36
+ vocals_tensor = None
37
+
38
+ # * Extracting vocals
39
+ overlap = self.models[0].overlap
40
+ chunk_size = self.models[0].chunk_size
41
+ gen_size = chunk_size - 2 * overlap
42
+ pad_size = gen_size - number_of_samples % gen_size
43
+ # Along the column dimensions (used for features), we pad the left and right side of the mix to keep the integrity of the whole tensor
44
+ # overlap is added to ensure there's overlap between chunks.
45
+ mix_padded = torch.cat([torch.zeros(2, overlap), music_tensor, torch.zeros(2, pad_size+overlap)], 1)
46
+
47
+ ort_session = ort.InferenceSession(f'{PRETRAINED_MODELS_DIRECTORY}/{self.models[0].target_name}.onnx', providers=EXECUTION_PROVIDER_LIST)
48
+
49
+ # process one chunk at a time (batch_size=1)
50
+ demixed_chunks = []
51
+ i = 0
52
+ while i < number_of_samples + pad_size:
53
+ chunk = mix_padded[:, i : i + chunk_size]
54
+ x = self.models[0].stft(chunk.unsqueeze(0).to(COMPUTATION_DEVICE))
55
+ with torch.no_grad():
56
+ x = torch.tensor(ort_session.run(None, {'input': x.cpu().numpy()})[0])
57
+ x = self.models[0].stft.inverse(x).squeeze(0)
58
+ x = x[...,overlap:-overlap]
59
+ demixed_chunks.append(x)
60
+ i += gen_size
61
+
62
+ vocals_tensor = torch.cat(demixed_chunks, -1)[...,:-pad_size].cpu()
63
+
64
+ # Subtract vocals output from the input mix for the remaining models
65
+ music_minus_vocals_tensor = music_tensor - vocals_tensor
66
+
67
+ # Returning two tensors.
68
+ return music_minus_vocals_tensor, vocals_tensor
69
+
70
+ def demix_vocals(self, music_tensor, sample_rate):
71
+ """
72
+ Isolating vocals using an ONNX model.
73
+ Assuming the audio is loaded correctly at 41000hz samplerate.
74
+
75
+ Args:
76
+ music_tensor (torch.Tensor): Input tensor.
77
+ model (torch.nn): Model used for inferring.
78
+
79
+ Returns:
80
+ torch.Tensor: Output tensor after passing through the network.
81
+ """
82
+ number_of_samples = music_tensor.shape[1]
83
+ overlap = self.models[0].overlap
84
+
85
+ # Calculate chunk_size and gen_size based on the sample rate
86
+ chunk_size = self.models[0].chunk_size
87
+ gen_size = chunk_size - 2 * overlap
88
+ pad_size = gen_size - number_of_samples % gen_size
89
+ mix_padded = torch.cat(
90
+ [torch.zeros(2, overlap), music_tensor, torch.zeros(2, pad_size + overlap)],
91
+ 1,
92
+ )
93
+
94
+ # Start running the session for the model
95
+ ort_session = ort.InferenceSession(
96
+ ONNX_MODEL_PATH, providers=EXECUTION_PROVIDER_LIST
97
+ )
98
+
99
+ # process one chunk at a time (batch_size=1)
100
+ demixed_chunks = []
101
+ i = 0
102
+ while i < number_of_samples + pad_size:
103
+ # Computation
104
+ chunk = mix_padded[:, i : i + chunk_size]
105
+ x = self.models[0].stft(chunk.unsqueeze(0).to(COMPUTATION_DEVICE))
106
+ with torch.no_grad():
107
+ x = torch.tensor(ort_session.run(None, {"input": x.cpu().numpy()})[0])
108
+ x = self.models[0].stft.inverse(x).squeeze(0)
109
+ x = x[..., overlap:-overlap]
110
+ demixed_chunks.append(x)
111
+ i += gen_size
112
+
113
+ vocals_output = torch.cat(demixed_chunks, -1)[..., :-pad_size].cpu()
114
+
115
+ return vocals_output
vocal_isolation/models/mdx_net.py ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Third-party
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ # Local
6
+ from vocal_isolation.short_time_fourier_transform import STFT
7
+ from vocal_isolation.constants import COMPUTATION_DEVICE
8
+
9
+ dim_s = 4
10
+ dim_c = 4
11
+
12
+ class TFCC(nn.Module):
13
+ def __init__(self, c, l, k):
14
+ super(TFCC, self).__init__()
15
+
16
+ self.H = nn.ModuleList()
17
+ for i in range(l):
18
+ self.H.append(
19
+ nn.Sequential(
20
+ nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
21
+ nn.GroupNorm(4, c),
22
+ nn.ReLU(),
23
+ )
24
+ )
25
+
26
+ def forward(self, x):
27
+ for h in self.H:
28
+ x = h(x)
29
+ return x
30
+
31
+
32
+ class DenseTFCC(nn.Module):
33
+ def __init__(self, c, l, k):
34
+ super(DenseTFCC, self).__init__()
35
+
36
+ self.conv = nn.ModuleList()
37
+ for i in range(l):
38
+ self.conv.append(
39
+ nn.Sequential(
40
+ nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
41
+ nn.GroupNorm(4, c),
42
+ nn.ReLU(),
43
+ )
44
+ )
45
+
46
+ def forward(self, x):
47
+ for layer in self.conv[:-1]:
48
+ x = torch.cat([layer(x), x], 1)
49
+ return self.conv[-1](x)
50
+
51
+
52
+ class TFC_TDFF(nn.Module):
53
+ def __init__(self, c, l, f, k, bn, dense=False, bias=True):
54
+
55
+ super(TFC_TDFF, self).__init__()
56
+
57
+ self.use_tdf = bn is not None
58
+
59
+ self.tfc = DenseTFCC(c, l, k) if dense else TFCC(c, l, k)
60
+
61
+ if self.use_tdf:
62
+ if bn == 0:
63
+ self.tdf = nn.Sequential(
64
+ nn.Linear(f, f, bias=bias),
65
+ nn.GroupNorm(4, c),
66
+ nn.ReLU()
67
+ )
68
+ else:
69
+ self.tdf = nn.Sequential(
70
+ nn.Linear(f, f // bn, bias=bias),
71
+ nn.GroupNorm(4, c),
72
+ nn.ReLU(),
73
+ nn.Linear(f // bn, f, bias=bias),
74
+ nn.GroupNorm(4, c),
75
+ nn.ReLU()
76
+ )
77
+
78
+ def forward(self, x):
79
+ x = self.tfc(x)
80
+ return x + self.tdf(x) if self.use_tdf else x
81
+
82
+
83
+ class TFC(nn.Module):
84
+ def __init__(self, c, l, k):
85
+ super(TFC, self).__init__()
86
+
87
+ self.H = nn.ModuleList()
88
+ for i in range(l):
89
+ self.H.append(
90
+ nn.Sequential(
91
+ nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
92
+ nn.GroupNorm(2, c),
93
+ nn.ReLU(),
94
+ )
95
+ )
96
+
97
+ def forward(self, x):
98
+ for h in self.H:
99
+ x = h(x)
100
+ return x
101
+
102
+
103
+ class DenseTFC(nn.Module):
104
+ def __init__(self, c, l, k):
105
+ super(DenseTFC, self).__init__()
106
+
107
+ self.conv = nn.ModuleList()
108
+ for i in range(l):
109
+ self.conv.append(
110
+ nn.Sequential(
111
+ nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
112
+ nn.GroupNorm(2, c),
113
+ nn.ReLU(),
114
+ )
115
+ )
116
+
117
+ def forward(self, x):
118
+ for layer in self.conv[:-1]:
119
+ x = torch.cat([layer(x), x], 1)
120
+ return self.conv[-1](x)
121
+
122
+
123
+ class TFC_TDF(nn.Module):
124
+ def __init__(self, c, l, f, k, bn, dense=False, bias=True):
125
+
126
+ super(TFC_TDF, self).__init__()
127
+
128
+ self.use_tdf = bn is not None
129
+
130
+ self.tfc = DenseTFC(c, l, k) if dense else TFC(c, l, k)
131
+
132
+ if self.use_tdf:
133
+ if bn == 0:
134
+ self.tdf = nn.Sequential(
135
+ nn.Linear(f, f, bias=bias),
136
+ nn.GroupNorm(2, c),
137
+ nn.ReLU()
138
+ )
139
+ else:
140
+ self.tdf = nn.Sequential(
141
+ nn.Linear(f, f // bn, bias=bias),
142
+ nn.GroupNorm(2, c),
143
+ nn.ReLU(),
144
+ nn.Linear(f // bn, f, bias=bias),
145
+ nn.GroupNorm(2, c),
146
+ nn.ReLU()
147
+ )
148
+
149
+ def forward(self, x):
150
+ x = self.tfc(x)
151
+ return x + self.tdf(x) if self.use_tdf else x
152
+
153
+
154
+ class Conv_TDF(nn.Module):
155
+ """
156
+ Convolutional Time-Domain Filter (TDF) Module.
157
+
158
+ Args:
159
+ c (int): The number of input and output channels for the convolutional layers.
160
+ l (int): The number of convolutional layers within the module.
161
+ f (int): The number of features (or units) in the time-domain filter.
162
+ k (int): The size of the convolutional kernels (filters).
163
+ bn (int or None): Batch normalization factor (controls TDF behavior). If None, TDF is not used.
164
+ bias (bool): A boolean flag indicating whether bias terms are included in the linear layers.
165
+
166
+ Attributes:
167
+ use_tdf (bool): Flag indicating whether TDF is used.
168
+
169
+ Methods:
170
+ forward(x): Forward pass through the TDF module.
171
+ """
172
+
173
+ def __init__(self, c, l, f, k, bn, bias=True):
174
+ super(Conv_TDF, self).__init__()
175
+
176
+ # Determine whether to use TDF (Time-Domain Filter)
177
+ self.use_tdf = bn is not None
178
+
179
+ # Define a list of convolutional layers within the module
180
+ self.H = nn.ModuleList()
181
+ for i in range(l):
182
+ self.H.append(
183
+ nn.Sequential(
184
+ nn.Conv2d(
185
+ in_channels=c,
186
+ out_channels=c,
187
+ kernel_size=k,
188
+ stride=1,
189
+ padding=k // 2,
190
+ ),
191
+ nn.GroupNorm(2, c),
192
+ nn.ReLU(),
193
+ )
194
+ )
195
+
196
+ # Define the Time-Domain Filter (TDF) layers if enabled
197
+ if self.use_tdf:
198
+ if bn == 0:
199
+ self.tdf = nn.Sequential(
200
+ nn.Linear(f, f, bias=bias), nn.GroupNorm(2, c), nn.ReLU()
201
+ )
202
+ else:
203
+ self.tdf = nn.Sequential(
204
+ nn.Linear(f, f // bn, bias=bias),
205
+ nn.GroupNorm(2, c),
206
+ nn.ReLU(),
207
+ nn.Linear(f // bn, f, bias=bias),
208
+ nn.GroupNorm(2, c),
209
+ nn.ReLU(),
210
+ )
211
+
212
+ def forward(self, x):
213
+ # Apply the convolutional layers sequentially
214
+ for h in self.H:
215
+ x = h(x)
216
+
217
+ # Apply the Time-Domain Filter (TDF) if enabled, and add the result to the orignal input
218
+ return x + self.tdf(x) if self.use_tdf else x
219
+
220
+
221
+ class Conv_TDF_net_trimm(nn.Module):
222
+ """
223
+ Convolutional Time-Domain Filter (TDF) Network with Trimming.
224
+ Used for Vocals.
225
+
226
+ Args:
227
+ L (int): This parameter controls the number of down-sampling (DS) blocks in the network.
228
+ It's divided by 2 to determine how many DS blocks should be created.
229
+ l (int): This parameter represents the number of convolutional layers (or filters) within each dense (fully connected) block.
230
+ g (int): This parameter specifies the number of output channels for the first convolutional layer and is also used to determine the number of channels for subsequent layers in the network.
231
+ dim_f (int): This parameter represents the number of frequency bins (spectrogram columns) in the input audio data.
232
+ dim_t (int): This parameter represents the number of time frames (spectrogram rows) in the input audio data.
233
+ k (int): This parameter specifies the size of convolutional kernels (filters) used in the network's convolutional layers.
234
+ bn (int or None): This parameter controls whether batch normalization is used in the network.
235
+ If it's None, batch normalization may or may not be used based on other conditions in the code.
236
+ bias (bool): This parameter is a boolean flag that controls whether bias terms are included in the convolutional layers.
237
+ overlap (int): This parameter specifies the amount of overlap between consecutive chunks of audio data during processing.
238
+
239
+ Attributes:
240
+ n (int): The calculated number of down-sampling (DS) blocks.
241
+ dim_f (int): The number of frequency bins (spectrogram columns) in the input audio data.
242
+ dim_t (int): The number of time frames (spectrogram rows) in the input audio data.
243
+ n_fft (int): The size of the Fast Fourier Transform (FFT) window.
244
+ hop (int): The hop size used in the STFT calculations.
245
+ n_bins (int): The number of bins in the frequency domain.
246
+ chunk_size (int): The size of each chunk of audio data.
247
+ target_name (str): The name of the target instrument being separated.
248
+ overlap (int): The amount of overlap between consecutive chunks of audio data during processing.
249
+
250
+ Methods:
251
+ forward(x): Forward pass through the Conv_TDF_net_trimm network.
252
+ """
253
+
254
+ def __init__(
255
+ self,
256
+ model_path,
257
+ use_onnx,
258
+ target_name,
259
+ L,
260
+ l,
261
+ g,
262
+ dim_f,
263
+ dim_t,
264
+ k=3,
265
+ hop=1024,
266
+ bn=None,
267
+ bias=True,
268
+ overlap=1500,
269
+ ):
270
+ super(Conv_TDF_net_trimm, self).__init__()
271
+ # Dictionary specifying the scale for the number of FFT bins for different target names
272
+ n_fft_scale = {"vocals": 3, "*": 2}
273
+
274
+ # Number of input and output channels for the initial and final convolutional layers
275
+ out_c = in_c = 4
276
+
277
+ # Number of down-sampling (DS) blocks
278
+ self.n = L // 2
279
+
280
+ # Dimensions of the frequency and time axes of the input data
281
+ self.dim_f = 3072
282
+ self.dim_t = 256
283
+
284
+ # Number of FFT bins (frequencies) and hop size for the Short-Time Fourier Transform (STFT)
285
+ self.n_fft = 7680
286
+ self.hop = hop
287
+ self.n_bins = self.n_fft // 2 + 1
288
+
289
+ # Chunk size used for processing
290
+ self.chunk_size = hop * (self.dim_t - 1)
291
+
292
+ # Target name for the model
293
+ self.target_name = target_name
294
+
295
+ # Overlap between consecutive chunks of audio data during processing
296
+ self.overlap = overlap
297
+
298
+ # STFT module for audio processing
299
+ self.stft = STFT(self.n_fft, self.hop, self.dim_f)
300
+
301
+ # Check if ONNX representation of the model should be used
302
+ if not use_onnx:
303
+ # First convolutional layer
304
+ self.first_conv = nn.Sequential(
305
+ nn.Conv2d(in_channels=in_c, out_channels=g, kernel_size=1, stride=1),
306
+ nn.BatchNorm2d(g),
307
+ nn.ReLU(),
308
+ )
309
+
310
+ # Initialize variables for dense (fully connected) blocks and downsampling (DS) blocks
311
+ f = self.dim_f
312
+ c = g
313
+ self.ds_dense = nn.ModuleList()
314
+ self.ds = nn.ModuleList()
315
+
316
+ # Loop through down-sampling (DS) blocks
317
+ for i in range(self.n):
318
+ # Create dense (fully connected) block for down-sampling
319
+ self.ds_dense.append(Conv_TDF(c, l, f, k, bn, bias=bias))
320
+
321
+ # Create down-sampling (DS) block
322
+ scale = (2, 2)
323
+ self.ds.append(
324
+ nn.Sequential(
325
+ nn.Conv2d(
326
+ in_channels=c,
327
+ out_channels=c + g,
328
+ kernel_size=scale,
329
+ stride=scale,
330
+ ),
331
+ nn.BatchNorm2d(c + g),
332
+ nn.ReLU(),
333
+ )
334
+ )
335
+ f = f // 2
336
+ c += g
337
+
338
+ # Middle dense (fully connected block)
339
+ self.mid_dense = Conv_TDF(c, l, f, k, bn, bias=bias)
340
+
341
+ # If batch normalization is not specified and mid_tdf is True, use Conv_TDF with bn=0 and bias=False
342
+ if bn is None and mid_tdf:
343
+ self.mid_dense = Conv_TDF(c, l, f, k, bn=0, bias=False)
344
+
345
+ # Initialize variables for up-sampling (US) blocks
346
+ self.us_dense = nn.ModuleList()
347
+ self.us = nn.ModuleList()
348
+
349
+ # Loop through up-sampling (US) blocks
350
+ for i in range(self.n):
351
+ scale = (2, 2)
352
+ # Create up-sampling (US) block
353
+ self.us.append(
354
+ nn.Sequential(
355
+ nn.ConvTranspose2d(
356
+ in_channels=c,
357
+ out_channels=c - g,
358
+ kernel_size=scale,
359
+ stride=scale,
360
+ ),
361
+ nn.BatchNorm2d(c - g),
362
+ nn.ReLU(),
363
+ )
364
+ )
365
+ f = f * 2
366
+ c -= g
367
+
368
+ # Create dense (fully connected) block for up-sampling
369
+ self.us_dense.append(Conv_TDF(c, l, f, k, bn, bias=bias))
370
+
371
+ # Final convolutional layer
372
+ self.final_conv = nn.Sequential(
373
+ nn.Conv2d(in_channels=c, out_channels=out_c, kernel_size=1, stride=1),
374
+ )
375
+
376
+ try:
377
+ # Load model state from a file
378
+ self.load_state_dict(
379
+ torch.load(
380
+ f"{model_path}/{target_name}.pt",
381
+ map_location=COMPUTATION_DEVICE,
382
+ )
383
+ )
384
+ print(f"Loading model ({target_name})")
385
+ except FileNotFoundError:
386
+ print(f"Random init ({target_name})")
387
+
388
+ def forward(self, x):
389
+ """
390
+ Forward pass through the Conv_TDF_net_trimm network.
391
+
392
+ Args:
393
+ x (torch.Tensor): Input tensor.
394
+
395
+ Returns:
396
+ torch.Tensor: Output tensor after passing through the network.
397
+ """
398
+ x = self.first_conv(x)
399
+
400
+ x = x.transpose(-1, -2)
401
+
402
+ ds_outputs = []
403
+ for i in range(self.n):
404
+ x = self.ds_dense[i](x)
405
+ ds_outputs.append(x)
406
+ x = self.ds[i](x)
407
+
408
+ x = self.mid_dense(x)
409
+
410
+ for i in range(self.n):
411
+ x = self.us[i](x)
412
+ x *= ds_outputs[-i - 1]
413
+ x = self.us_dense[i](x)
414
+
415
+ x = x.transpose(-1, -2)
416
+
417
+ x = self.final_conv(x)
418
+
419
+ return x
420
+
421
+
422
+ class Conv_TDF_net_trim(nn.Module):
423
+ """
424
+ Convolutional Time-Domain Filter (TDF) Network with Trimming.
425
+ Used for drums and other.
426
+
427
+ Args:
428
+ L (int): This parameter controls the number of down-sampling (DS) blocks in the network.
429
+ It's divided by 2 to determine how many DS blocks should be created.
430
+ l (int): This parameter represents the number of convolutional layers (or filters) within each dense (fully connected) block.
431
+ g (int): This parameter specifies the number of output channels for the first convolutional layer and is also used to determine the number of channels for subsequent layers in the network.
432
+ dim_f (int): This parameter represents the number of frequency bins (spectrogram columns) in the input audio data.
433
+ dim_t (int): This parameter represents the number of time frames (spectrogram rows) in the input audio data.
434
+ k (int): This parameter specifies the size of convolutional kernels (filters) used in the network's convolutional layers.
435
+ bn (int or None): This parameter controls whether batch normalization is used in the network.
436
+ If it's None, batch normalization may or may not be used based on other conditions in the code.
437
+ bias (bool): This parameter is a boolean flag that controls whether bias terms are included in the convolutional layers.
438
+ overlap (int): This parameter specifies the amount of overlap between consecutive chunks of audio data during processing.
439
+
440
+ Attributes:
441
+ n (int): The calculated number of down-sampling (DS) blocks.
442
+ dim_f (int): The number of frequency bins (spectrogram columns) in the input audio data.
443
+ dim_t (int): The number of time frames (spectrogram rows) in the input audio data.
444
+ n_fft (int): The size of the Fast Fourier Transform (FFT) window.
445
+ hop (int): The hop size used in the STFT calculations.
446
+ n_bins (int): The number of bins in the frequency domain.
447
+ chunk_size (int): The size of each chunk of audio data.
448
+ target_name (str): The name of the target instrument being separated.
449
+ overlap (int): The amount of overlap between consecutive chunks of audio data during processing.
450
+
451
+ Methods:
452
+ forward(x): Forward pass through the Conv_TDF_net_trimm network.
453
+ """
454
+ def __init__(self, model_path, use_onnx, target_name,
455
+ L, l, g, dim_f, dim_t, k=3, hop=1024, bn=None, bias=False, overlap=1754):
456
+
457
+ super(Conv_TDF_net_trim, self).__init__()
458
+
459
+ n_fft_scale = {'drums', 'other'}
460
+
461
+ out_c = in_c = 4
462
+ self.n = L//2
463
+ self.dim_f = 3072
464
+ self.dim_t = 256
465
+ self.n_fft = 7680
466
+ self.hop = hop
467
+ self.n_bins = self.n_fft//2+1
468
+ self.chunk_size = hop * (self.dim_t-1)
469
+ self.use_onnx = use_onnx
470
+ self.target_name = target_name
471
+ self.overlap = overlap
472
+ self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False)
473
+ self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False)
474
+
475
+ self.stft = STFT(self.n_fft, self.hop, self.dim_f)
476
+
477
+ if not use_onnx:
478
+
479
+ scale = (2, 2)
480
+ self.first_conv = nn.Sequential(
481
+ nn.Conv2d(in_channels=4, out_channels=g, kernel_size=(1, 1)),
482
+ nn.GroupNorm(2, g),
483
+ nn.ReLU(),
484
+ )
485
+
486
+ f = self.dim_f
487
+ c = g
488
+ self.encoding_blocks = nn.ModuleList()
489
+ self.ds = nn.ModuleList()
490
+ for i in range(self.n):
491
+ self.encoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias))
492
+ self.ds.append(
493
+ nn.Sequential(
494
+ nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale),
495
+ nn.GroupNorm(2, c + g),
496
+ nn.ReLU()
497
+ )
498
+ )
499
+ f = f // 2
500
+ c += g
501
+
502
+ self.bottleneck_block = TFC_TDF(c, l, f, k, bn, bias=bias)
503
+
504
+ self.decoding_blocks = nn.ModuleList()
505
+ self.us = nn.ModuleList()
506
+ for i in range(self.n):
507
+ self.us.append(
508
+ nn.Sequential(
509
+ nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale),
510
+ nn.GroupNorm(2, c - g),
511
+ nn.ReLU()
512
+ )
513
+ )
514
+ f = f * 2
515
+ c -= g
516
+
517
+ self.decoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias))
518
+
519
+ self.final_conv = nn.Sequential(
520
+ nn.Conv2d(in_channels=c, out_channels=4, kernel_size=(1, 1)),
521
+ )
522
+
523
+ try:
524
+ self.load_state_dict(
525
+ torch.load(f'{model_path}/{target_name}.pt', map_location=lambda storage, loc: storage)
526
+ )
527
+ print(f'Loading model ({target_name})')
528
+ except FileNotFoundError:
529
+ print(f'Random init ({target_name})')
530
+
531
+
532
+ def forward(self, x):
533
+
534
+ x = self.first_conv(x)
535
+
536
+ x = x.transpose(-1, -2)
537
+
538
+ ds_outputs = []
539
+ for i in range(self.n):
540
+ x = self.encoding_blocks[i](x)
541
+ ds_outputs.append(x)
542
+ x = self.ds[i](x)
543
+
544
+ x = self.bottleneck_block(x)
545
+
546
+ for i in range(self.n):
547
+ x = self.us[i](x)
548
+ x *= ds_outputs[-i - 1]
549
+ x = self.decoding_blocks[i](x)
550
+
551
+ x = x.transpose(-1, -2)
552
+
553
+ x = self.final_conv(x)
554
+
555
+ return x
556
+
557
+
558
+ class Conv_TDF_net_trimmmm(nn.Module):
559
+ """
560
+ Convolutional Time-Domain Filter (TDF) Network with Trimming.
561
+ Used for bass.
562
+
563
+ Args:
564
+ L (int): This parameter controls the number of down-sampling (DS) blocks in the network.
565
+ It's divided by 2 to determine how many DS blocks should be created.
566
+ l (int): This parameter represents the number of convolutional layers (or filters) within each dense (fully connected) block.
567
+ g (int): This parameter specifies the number of output channels for the first convolutional layer and is also used to determine the number of channels for subsequent layers in the network.
568
+ dim_f (int): This parameter represents the number of frequency bins (spectrogram columns) in the input audio data.
569
+ dim_t (int): This parameter represents the number of time frames (spectrogram rows) in the input audio data.
570
+ k (int): This parameter specifies the size of convolutional kernels (filters) used in the network's convolutional layers.
571
+ bn (int or None): This parameter controls whether batch normalization is used in the network.
572
+ If it's None, batch normalization may or may not be used based on other conditions in the code.
573
+ bias (bool): This parameter is a boolean flag that controls whether bias terms are included in the convolutional layers.
574
+ overlap (int): This parameter specifies the amount of overlap between consecutive chunks of audio data during processing.
575
+
576
+ Attributes:
577
+ n (int): The calculated number of down-sampling (DS) blocks.
578
+ dim_f (int): The number of frequency bins (spectrogram columns) in the input audio data.
579
+ dim_t (int): The number of time frames (spectrogram rows) in the input audio data.
580
+ n_fft (int): The size of the Fast Fourier Transform (FFT) window.
581
+ hop (int): The hop size used in the STFT calculations.
582
+ n_bins (int): The number of bins in the frequency domain.
583
+ chunk_size (int): The size of each chunk of audio data.
584
+ target_name (str): The name of the target instrument being separated.
585
+ overlap (int): The amount of overlap between consecutive chunks of audio data during processing.
586
+
587
+ Methods:
588
+ forward(x): Forward pass through the Conv_TDF_net_trimm network.
589
+ """
590
+ def __init__(self, model_path, use_onnx, target_name,
591
+ L, l, g, dim_f, dim_t, k=3, hop=1024, bn=None, bias=False, overlap=1350):
592
+
593
+ super(Conv_TDF_net_trimmmm, self).__init__()
594
+
595
+ n_fft_scale = {'bass'}
596
+
597
+ out_c = in_c = 4
598
+ self.n = L//2
599
+ self.dim_f = 2048
600
+ self.dim_t = 256
601
+ self.n_fft = 16384
602
+ self.hop = hop
603
+ self.n_bins = self.n_fft//2+1
604
+ self.chunk_size = hop * (self.dim_t-1)
605
+ self.use_onnx = use_onnx
606
+ self.target_name = target_name
607
+ self.overlap = overlap
608
+ self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False)
609
+ self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False)
610
+
611
+ self.stft = STFT(self.n_fft, self.hop, self.dim_f)
612
+
613
+ if not use_onnx:
614
+
615
+ scale = (2, 2)
616
+ self.first_conv = nn.Sequential(
617
+ nn.Conv2d(in_channels=4, out_channels=g, kernel_size=(1, 1)),
618
+ nn.GroupNorm(4, g),
619
+ nn.ReLU(),
620
+ )
621
+
622
+ f = self.dim_f
623
+ c = g
624
+ self.encoding_blocks = nn.ModuleList()
625
+ self.ds = nn.ModuleList()
626
+ for i in range(self.n):
627
+ self.encoding_blocks.append(TFC_TDFF(c, l, f, k, bn, bias=bias))
628
+ self.ds.append(
629
+ nn.Sequential(
630
+ nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale),
631
+ nn.GroupNorm(4, c + g),
632
+ nn.ReLU()
633
+ )
634
+ )
635
+ f = f // 2
636
+ c += g
637
+
638
+ self.bottleneck_block = TFC_TDFF(c, l, f, k, bn, bias=bias)
639
+
640
+ self.decoding_blocks = nn.ModuleList()
641
+ self.us = nn.ModuleList()
642
+ for i in range(self.n):
643
+ self.us.append(
644
+ nn.Sequential(
645
+ nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale),
646
+ nn.GroupNorm(4, c - g),
647
+ nn.ReLU()
648
+ )
649
+ )
650
+ f = f * 2
651
+ c -= g
652
+
653
+ self.decoding_blocks.append(TFC_TDFF(c, l, f, k, bn, bias=bias))
654
+
655
+ self.final_conv = nn.Sequential(
656
+ nn.Conv2d(in_channels=c, out_channels=4, kernel_size=(1, 1)),
657
+ )
658
+
659
+ try:
660
+ self.load_state_dict(
661
+ torch.load(f'{model_path}/{target_name}.pt', map_location=lambda storage, loc: storage)
662
+ )
663
+ print(f'Loading model ({target_name})')
664
+ except FileNotFoundError:
665
+ print(f'Random init ({target_name})')
666
+
667
+
668
+ def forward(self, x):
669
+
670
+ x = self.first_conv(x)
671
+
672
+ x = x.transpose(-1, -2)
673
+
674
+ ds_outputs = []
675
+ for i in range(self.n):
676
+ x = self.encoding_blocks[i](x)
677
+ ds_outputs.append(x)
678
+ x = self.ds[i](x)
679
+
680
+ x = self.bottleneck_block(x)
681
+
682
+ for i in range(self.n):
683
+ x = self.us[i](x)
684
+ x *= ds_outputs[-i - 1]
685
+ x = self.decoding_blocks[i](x)
686
+
687
+ x = x.transpose(-1, -2)
688
+
689
+ x = self.final_conv(x)
690
+
691
+ return x
vocal_isolation/pretrained_models/vocals.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce74ef3b6a6024ce44211a07be9cf8bc6d87728cc852a68ab34eb8e58cde9c8b
3
+ size 66759214
vocal_isolation/short_time_fourier_transform.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class STFT:
5
+ def __init__(self, n_fft, hop_length, dim_f):
6
+ self.n_fft = n_fft
7
+ self.hop_length = hop_length
8
+ self.window = torch.hann_window(window_length=n_fft, periodic=True)
9
+ self.dim_f = dim_f
10
+
11
+ def __call__(self, x):
12
+ window = self.window.to(x.device)
13
+ batch_dims = x.shape[:-2]
14
+ c, t = x.shape[-2:]
15
+ x = x.reshape([-1, t])
16
+ x = torch.stft(
17
+ x,
18
+ n_fft=self.n_fft,
19
+ hop_length=self.hop_length,
20
+ window=window,
21
+ center=True,
22
+ return_complex=True,
23
+ )
24
+ x = torch.view_as_real(x)
25
+ x = x.permute([0, 3, 1, 2])
26
+ x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape(
27
+ [*batch_dims, c * 2, -1, x.shape[-1]]
28
+ )
29
+ return x[..., : self.dim_f, :]
30
+
31
+ def inverse(self, x):
32
+ window = self.window.to(x.device)
33
+ batch_dims = x.shape[:-3]
34
+ c, f, t = x.shape[-3:]
35
+ n = self.n_fft // 2 + 1
36
+ f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
37
+ x = torch.cat([x, f_pad], -2)
38
+ x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
39
+ x = x.permute([0, 2, 3, 1])
40
+ x = x.contiguous()
41
+ t_complex = torch.view_as_complex(x)
42
+ x = torch.istft(
43
+ t_complex,
44
+ n_fft=self.n_fft,
45
+ hop_length=self.hop_length,
46
+ window=window,
47
+ center=True,
48
+ )
49
+ x = x.reshape([*batch_dims, 2, -1])
50
+ return x
vocal_isolation/vocal_isolation.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Third Party
2
+ import soundfile
3
+ import numpy
4
+
5
+ # Local
6
+ from vocal_isolation.loader import Loader
7
+ from vocal_isolation.models.kimvocal import KimVocal
8
+
9
+ # Constants
10
+ from vocal_isolation.constants import INPUT_FOLDER, OUTPUT_FOLDER
11
+
12
+ def isolate_vocals_kim_vocals(input_file_name="audio"):
13
+
14
+ loader = Loader(INPUT_FOLDER, OUTPUT_FOLDER)
15
+
16
+ music_numpy_array, sample_rate = loader.load_wav(input_file_name)
17
+
18
+ kimvocal = KimVocal()
19
+
20
+ instrumentals_tensor, vocals_tensor = kimvocal.demix_both(music_tensor=music_numpy_array, sample_rate=sample_rate)
21
+
22
+ instrumentals_numpy = instrumentals_tensor.numpy().T
23
+ vocals_numpy = vocals_tensor.numpy().T
24
+
25
+ soundfile.write(file=OUTPUT_FOLDER + "/no_vocals.wav", data=instrumentals_numpy, samplerate=sample_rate)
26
+ soundfile.write(file=OUTPUT_FOLDER + "/vocals.wav", data=vocals_numpy, samplerate=sample_rate)
27
+
28
+ return True
weights/Blackpink/lisa/added_IVF402_Flat_nprobe_1_blackpink-lisa-podcast_v2.index ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71ef9d1a52584da2caa6a9371686d8b73aaed49bf18c242ad009488117e51fc0
3
+ size 49541939
weights/Blackpink/lisa/cover.png ADDED

Git LFS Details

  • SHA256: 894e1465f1e4be66d3de757940fb312ba16e79777d7225cb48fc17d094777cfe
  • Pointer size: 132 Bytes
  • Size of remote file: 1.25 MB
weights/Blackpink/lisa/lisa.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3e4879751f5705c412a9061343bfdb18fb0af0616367bac1a414982669b054
3
+ size 57589524
weights/Blackpink/model_info.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "lisa": {
3
+ "enable": true,
4
+ "model_path": "lisa.pth",
5
+ "title": "BLACKPINK Lisa",
6
+ "cover": "cover.png",
7
+ "feature_retrieval_library": "added_IVF402_Flat_nprobe_1_blackpink-lisa-podcast_v2.index",
8
+ "author": "Smotto"
9
+ }
10
+ }
weights/Gidle/miyeon/added_IVF455_Flat_nprobe_1_gidle-miyeon_v2.index ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7a55b47e8e2157814631b3154f07eecee6205711961751a435e8ab7ffaa2a32
3
+ size 56145459
weights/Gidle/miyeon/cover.png ADDED

Git LFS Details

  • SHA256: 4169c572fd94439a048b5c5d9e55e8f3e0722202d1a236bb48fb4b5a281cc4d3
  • Pointer size: 132 Bytes
  • Size of remote file: 3.24 MB
weights/Gidle/miyeon/miyeon.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:309325eb5e4f6cd13ef3bc71ead58e2689ef460764f892a7a034e20e8b8918c2
3
+ size 57589983
weights/Gidle/model_info.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "miyeon": {
3
+ "enable": true,
4
+ "model_path": "miyeon.pth",
5
+ "title": "(G)-IDLE Miyeon",
6
+ "cover": "cover.png",
7
+ "feature_retrieval_library": "added_IVF455_Flat_nprobe_1_gidle-miyeon_v2.index",
8
+ "author": "Smotto"
9
+ }
10
+ }
weights/folder_info.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Gidle":{
3
+ "enable": true,
4
+ "title": "(G)-IDLE Models",
5
+ "folder_path": "Gidle",
6
+ "description": "Enjoy."
7
+ },
8
+ "Blackpink":{
9
+ "enable": true,
10
+ "title": "BLACKPINK Models",
11
+ "folder_path": "Blackpink",
12
+ "description": "Enjoy."
13
+ }
14
+ }