Snow-White-995 commited on
Commit
b2458f3
1 Parent(s): 0bf0aa4

Upload 13 files

Browse files
Files changed (13) hide show
  1. LICENSE +661 -0
  2. app.py +160 -0
  3. attentions.py +464 -0
  4. commons.py +166 -0
  5. infer.py +166 -0
  6. mel_processing.py +139 -0
  7. models.py +1002 -0
  8. modules.py +597 -0
  9. requirements.txt +35 -0
  10. server.py +120 -0
  11. server_fastapi.py +499 -0
  12. transforms.py +209 -0
  13. utils.py +357 -0
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import re
3
+
4
+ import gradio as gr
5
+ import numpy
6
+ import torch
7
+
8
+ import utils
9
+ from infer import infer, get_net_g
10
+
11
+ logging.getLogger("numba").setLevel(logging.WARNING)
12
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
13
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
14
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
15
+
16
+ logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
17
+
18
+ logger = logging.getLogger(__name__)
19
+
20
+ net_g = None
21
+ hps = None
22
+
23
+ device = "cuda" if torch.cuda.is_available() else "cpu"
24
+ model_path = "models/G_1000.pth"
25
+ sampling_rate = 22050
26
+
27
+
28
+ def split_sentence(sentence: str):
29
+ if len(sentence) == 0:
30
+ return []
31
+
32
+ result = []
33
+
34
+ is_english = [i.isascii() for i in sentence]
35
+ is_chinese = [not re.match(r"[a-zA-Z]", i) for i in sentence]
36
+
37
+ assert len(is_english) == len(is_chinese) == len(sentence), "bad length"
38
+ assert is_english[0] or is_chinese[0], "bad first char: " + sentence[0]
39
+
40
+ current_language = ''
41
+ current_chain = []
42
+ for idx in range(len(sentence)):
43
+ if not is_english[idx]:
44
+ current_language = 'ZH'
45
+ current_chain = is_chinese
46
+ break
47
+ if not is_chinese[idx]:
48
+ current_language = 'EN'
49
+ current_chain = is_english
50
+ break
51
+ pass
52
+
53
+ step = 0
54
+ while step < len(sentence):
55
+ try:
56
+ next_step = current_chain.index(False, step)
57
+ except ValueError:
58
+ next_step = len(sentence)
59
+ result.append((sentence[step:next_step], current_language))
60
+ step = next_step
61
+ current_language = 'ZH' if current_language == 'EN' else 'EN'
62
+ current_chain = is_chinese if current_language == 'ZH' else is_english
63
+ pass
64
+
65
+ return result
66
+
67
+
68
+ def tts_fn(
69
+ text: str,
70
+ speaker,
71
+ sdp_ratio,
72
+ noise_scale,
73
+ noise_scale_w,
74
+ length_scale,
75
+ language,
76
+ ):
77
+ language = 'ZH' if language == '普通话' else 'SH'
78
+ sentences = split_sentence(text)
79
+
80
+ silence = numpy.zeros(sampling_rate // 2, dtype=numpy.int16)
81
+ audio_data = numpy.array([], dtype=numpy.float32)
82
+ for (sentence, sentence_language) in sentences:
83
+ sub_audio_data = infer(
84
+ sentence,
85
+ sdp_ratio,
86
+ noise_scale,
87
+ noise_scale_w,
88
+ length_scale,
89
+ sid=speaker,
90
+ language=language if sentence_language == "ZH" else sentence_language,
91
+ hps=hps,
92
+ net_g=net_g,
93
+ device=device)
94
+ audio_data = numpy.concatenate((audio_data, sub_audio_data, silence))
95
+
96
+ audio_data = audio_data / numpy.abs(audio_data).max()
97
+ audio_data = audio_data * 32767
98
+ audio_data = audio_data.astype(numpy.int16)
99
+
100
+ return "Success", (sampling_rate, audio_data)
101
+
102
+
103
+ def main():
104
+ logging.basicConfig(level=logging.DEBUG)
105
+
106
+ global hps
107
+ hps = utils.get_hparams_from_file("configs/config.json")
108
+
109
+ global net_g
110
+ net_g = get_net_g(model_path=model_path, device=device, hps=hps)
111
+
112
+ speaker_ids = hps.data.spk2id
113
+ speakers = list(speaker_ids.keys())
114
+ languages = ["普通话", "上海话"]
115
+ with gr.Blocks() as app:
116
+ with gr.Row():
117
+ with gr.Column():
118
+ text = gr.TextArea(
119
+ label="输入文本内容",
120
+ value="\n".join([
121
+ "站一个制高点看上海,",
122
+ "Looking at Shanghai from a commanding height,",
123
+ "上海的弄堂是壮观的景象。",
124
+ "The alleys in Shanghai are a great sight.",
125
+ "它是这城市背景一样的东西。",
126
+ "It is something with the same background as this city."
127
+ ]),
128
+ )
129
+ sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.1, label="SDP/DP混合比")
130
+ noise_scale = gr.Slider(minimum=0.1, maximum=2, value=0.6, step=0.1, label="感情")
131
+ noise_scale_w = gr.Slider(minimum=0.1, maximum=2, value=0.8, step=0.1, label="音素长度")
132
+ length_scale = gr.Slider(minimum=0.1, maximum=2, value=1.0, step=0.1, label="语速")
133
+ with gr.Column():
134
+ with gr.Row():
135
+ with gr.Column():
136
+ speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="选择说话人")
137
+ with gr.Column():
138
+ language = gr.Dropdown(choices=languages, value=languages[0], label="选择语言")
139
+ submit_btn = gr.Button("生成音频", variant="primary")
140
+ text_output = gr.Textbox(label="状态")
141
+ audio_output = gr.Audio(label="音频")
142
+ submit_btn.click(
143
+ tts_fn,
144
+ inputs=[
145
+ text,
146
+ speaker,
147
+ sdp_ratio,
148
+ noise_scale,
149
+ noise_scale_w,
150
+ length_scale,
151
+ language,
152
+ ],
153
+ outputs=[text_output, audio_output],
154
+ )
155
+
156
+ app.launch(share=False, server_name="0.0.0.0", server_port=7860)
157
+
158
+
159
+ if __name__ == "__main__":
160
+ main()
attentions.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ import logging
8
+
9
+ logger = logging.getLogger(__name__)
10
+
11
+
12
+ class LayerNorm(nn.Module):
13
+ def __init__(self, channels, eps=1e-5):
14
+ super().__init__()
15
+ self.channels = channels
16
+ self.eps = eps
17
+
18
+ self.gamma = nn.Parameter(torch.ones(channels))
19
+ self.beta = nn.Parameter(torch.zeros(channels))
20
+
21
+ def forward(self, x):
22
+ x = x.transpose(1, -1)
23
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
24
+ return x.transpose(1, -1)
25
+
26
+
27
+ @torch.jit.script
28
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
29
+ n_channels_int = n_channels[0]
30
+ in_act = input_a + input_b
31
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
32
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
33
+ acts = t_act * s_act
34
+ return acts
35
+
36
+
37
+ class Encoder(nn.Module):
38
+ def __init__(
39
+ self,
40
+ hidden_channels,
41
+ filter_channels,
42
+ n_heads,
43
+ n_layers,
44
+ kernel_size=1,
45
+ p_dropout=0.0,
46
+ window_size=4,
47
+ isflow=True,
48
+ **kwargs
49
+ ):
50
+ super().__init__()
51
+ self.hidden_channels = hidden_channels
52
+ self.filter_channels = filter_channels
53
+ self.n_heads = n_heads
54
+ self.n_layers = n_layers
55
+ self.kernel_size = kernel_size
56
+ self.p_dropout = p_dropout
57
+ self.window_size = window_size
58
+ # if isflow:
59
+ # cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
60
+ # self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
61
+ # self.cond_layer = weight_norm(cond_layer, name='weight')
62
+ # self.gin_channels = 256
63
+ self.cond_layer_idx = self.n_layers
64
+ if "gin_channels" in kwargs:
65
+ self.gin_channels = kwargs["gin_channels"]
66
+ if self.gin_channels != 0:
67
+ self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
68
+ # vits2 says 3rd block, so idx is 2 by default
69
+ self.cond_layer_idx = (
70
+ kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
71
+ )
72
+ logging.debug(self.gin_channels, self.cond_layer_idx)
73
+ assert (
74
+ self.cond_layer_idx < self.n_layers
75
+ ), "cond_layer_idx should be less than n_layers"
76
+ self.drop = nn.Dropout(p_dropout)
77
+ self.attn_layers = nn.ModuleList()
78
+ self.norm_layers_1 = nn.ModuleList()
79
+ self.ffn_layers = nn.ModuleList()
80
+ self.norm_layers_2 = nn.ModuleList()
81
+ for i in range(self.n_layers):
82
+ self.attn_layers.append(
83
+ MultiHeadAttention(
84
+ hidden_channels,
85
+ hidden_channels,
86
+ n_heads,
87
+ p_dropout=p_dropout,
88
+ window_size=window_size,
89
+ )
90
+ )
91
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
92
+ self.ffn_layers.append(
93
+ FFN(
94
+ hidden_channels,
95
+ hidden_channels,
96
+ filter_channels,
97
+ kernel_size,
98
+ p_dropout=p_dropout,
99
+ )
100
+ )
101
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
102
+
103
+ def forward(self, x, x_mask, g=None):
104
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
105
+ x = x * x_mask
106
+ for i in range(self.n_layers):
107
+ if i == self.cond_layer_idx and g is not None:
108
+ g = self.spk_emb_linear(g.transpose(1, 2))
109
+ g = g.transpose(1, 2)
110
+ x = x + g
111
+ x = x * x_mask
112
+ y = self.attn_layers[i](x, x, attn_mask)
113
+ y = self.drop(y)
114
+ x = self.norm_layers_1[i](x + y)
115
+
116
+ y = self.ffn_layers[i](x, x_mask)
117
+ y = self.drop(y)
118
+ x = self.norm_layers_2[i](x + y)
119
+ x = x * x_mask
120
+ return x
121
+
122
+
123
+ class Decoder(nn.Module):
124
+ def __init__(
125
+ self,
126
+ hidden_channels,
127
+ filter_channels,
128
+ n_heads,
129
+ n_layers,
130
+ kernel_size=1,
131
+ p_dropout=0.0,
132
+ proximal_bias=False,
133
+ proximal_init=True,
134
+ **kwargs
135
+ ):
136
+ super().__init__()
137
+ self.hidden_channels = hidden_channels
138
+ self.filter_channels = filter_channels
139
+ self.n_heads = n_heads
140
+ self.n_layers = n_layers
141
+ self.kernel_size = kernel_size
142
+ self.p_dropout = p_dropout
143
+ self.proximal_bias = proximal_bias
144
+ self.proximal_init = proximal_init
145
+
146
+ self.drop = nn.Dropout(p_dropout)
147
+ self.self_attn_layers = nn.ModuleList()
148
+ self.norm_layers_0 = nn.ModuleList()
149
+ self.encdec_attn_layers = nn.ModuleList()
150
+ self.norm_layers_1 = nn.ModuleList()
151
+ self.ffn_layers = nn.ModuleList()
152
+ self.norm_layers_2 = nn.ModuleList()
153
+ for i in range(self.n_layers):
154
+ self.self_attn_layers.append(
155
+ MultiHeadAttention(
156
+ hidden_channels,
157
+ hidden_channels,
158
+ n_heads,
159
+ p_dropout=p_dropout,
160
+ proximal_bias=proximal_bias,
161
+ proximal_init=proximal_init,
162
+ )
163
+ )
164
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
165
+ self.encdec_attn_layers.append(
166
+ MultiHeadAttention(
167
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
168
+ )
169
+ )
170
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
171
+ self.ffn_layers.append(
172
+ FFN(
173
+ hidden_channels,
174
+ hidden_channels,
175
+ filter_channels,
176
+ kernel_size,
177
+ p_dropout=p_dropout,
178
+ causal=True,
179
+ )
180
+ )
181
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
182
+
183
+ def forward(self, x, x_mask, h, h_mask):
184
+ """
185
+ x: decoder input
186
+ h: encoder output
187
+ """
188
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
189
+ device=x.device, dtype=x.dtype
190
+ )
191
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
192
+ x = x * x_mask
193
+ for i in range(self.n_layers):
194
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
195
+ y = self.drop(y)
196
+ x = self.norm_layers_0[i](x + y)
197
+
198
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
199
+ y = self.drop(y)
200
+ x = self.norm_layers_1[i](x + y)
201
+
202
+ y = self.ffn_layers[i](x, x_mask)
203
+ y = self.drop(y)
204
+ x = self.norm_layers_2[i](x + y)
205
+ x = x * x_mask
206
+ return x
207
+
208
+
209
+ class MultiHeadAttention(nn.Module):
210
+ def __init__(
211
+ self,
212
+ channels,
213
+ out_channels,
214
+ n_heads,
215
+ p_dropout=0.0,
216
+ window_size=None,
217
+ heads_share=True,
218
+ block_length=None,
219
+ proximal_bias=False,
220
+ proximal_init=False,
221
+ ):
222
+ super().__init__()
223
+ assert channels % n_heads == 0
224
+
225
+ self.channels = channels
226
+ self.out_channels = out_channels
227
+ self.n_heads = n_heads
228
+ self.p_dropout = p_dropout
229
+ self.window_size = window_size
230
+ self.heads_share = heads_share
231
+ self.block_length = block_length
232
+ self.proximal_bias = proximal_bias
233
+ self.proximal_init = proximal_init
234
+ self.attn = None
235
+
236
+ self.k_channels = channels // n_heads
237
+ self.conv_q = nn.Conv1d(channels, channels, 1)
238
+ self.conv_k = nn.Conv1d(channels, channels, 1)
239
+ self.conv_v = nn.Conv1d(channels, channels, 1)
240
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
241
+ self.drop = nn.Dropout(p_dropout)
242
+
243
+ if window_size is not None:
244
+ n_heads_rel = 1 if heads_share else n_heads
245
+ rel_stddev = self.k_channels**-0.5
246
+ self.emb_rel_k = nn.Parameter(
247
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
248
+ * rel_stddev
249
+ )
250
+ self.emb_rel_v = nn.Parameter(
251
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
252
+ * rel_stddev
253
+ )
254
+
255
+ nn.init.xavier_uniform_(self.conv_q.weight)
256
+ nn.init.xavier_uniform_(self.conv_k.weight)
257
+ nn.init.xavier_uniform_(self.conv_v.weight)
258
+ if proximal_init:
259
+ with torch.no_grad():
260
+ self.conv_k.weight.copy_(self.conv_q.weight)
261
+ self.conv_k.bias.copy_(self.conv_q.bias)
262
+
263
+ def forward(self, x, c, attn_mask=None):
264
+ q = self.conv_q(x)
265
+ k = self.conv_k(c)
266
+ v = self.conv_v(c)
267
+
268
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
269
+
270
+ x = self.conv_o(x)
271
+ return x
272
+
273
+ def attention(self, query, key, value, mask=None):
274
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
275
+ b, d, t_s, t_t = (*key.size(), query.size(2))
276
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
277
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
278
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
279
+
280
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
281
+ if self.window_size is not None:
282
+ assert (
283
+ t_s == t_t
284
+ ), "Relative attention is only available for self-attention."
285
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
286
+ rel_logits = self._matmul_with_relative_keys(
287
+ query / math.sqrt(self.k_channels), key_relative_embeddings
288
+ )
289
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
290
+ scores = scores + scores_local
291
+ if self.proximal_bias:
292
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
293
+ scores = scores + self._attention_bias_proximal(t_s).to(
294
+ device=scores.device, dtype=scores.dtype
295
+ )
296
+ if mask is not None:
297
+ scores = scores.masked_fill(mask == 0, -1e4)
298
+ if self.block_length is not None:
299
+ assert (
300
+ t_s == t_t
301
+ ), "Local attention is only available for self-attention."
302
+ block_mask = (
303
+ torch.ones_like(scores)
304
+ .triu(-self.block_length)
305
+ .tril(self.block_length)
306
+ )
307
+ scores = scores.masked_fill(block_mask == 0, -1e4)
308
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
309
+ p_attn = self.drop(p_attn)
310
+ output = torch.matmul(p_attn, value)
311
+ if self.window_size is not None:
312
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
313
+ value_relative_embeddings = self._get_relative_embeddings(
314
+ self.emb_rel_v, t_s
315
+ )
316
+ output = output + self._matmul_with_relative_values(
317
+ relative_weights, value_relative_embeddings
318
+ )
319
+ output = (
320
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
321
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
322
+ return output, p_attn
323
+
324
+ def _matmul_with_relative_values(self, x, y):
325
+ """
326
+ x: [b, h, l, m]
327
+ y: [h or 1, m, d]
328
+ ret: [b, h, l, d]
329
+ """
330
+ ret = torch.matmul(x, y.unsqueeze(0))
331
+ return ret
332
+
333
+ def _matmul_with_relative_keys(self, x, y):
334
+ """
335
+ x: [b, h, l, d]
336
+ y: [h or 1, m, d]
337
+ ret: [b, h, l, m]
338
+ """
339
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
340
+ return ret
341
+
342
+ def _get_relative_embeddings(self, relative_embeddings, length):
343
+ 2 * self.window_size + 1
344
+ # Pad first before slice to avoid using cond ops.
345
+ pad_length = max(length - (self.window_size + 1), 0)
346
+ slice_start_position = max((self.window_size + 1) - length, 0)
347
+ slice_end_position = slice_start_position + 2 * length - 1
348
+ if pad_length > 0:
349
+ padded_relative_embeddings = F.pad(
350
+ relative_embeddings,
351
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
352
+ )
353
+ else:
354
+ padded_relative_embeddings = relative_embeddings
355
+ used_relative_embeddings = padded_relative_embeddings[
356
+ :, slice_start_position:slice_end_position
357
+ ]
358
+ return used_relative_embeddings
359
+
360
+ def _relative_position_to_absolute_position(self, x):
361
+ """
362
+ x: [b, h, l, 2*l-1]
363
+ ret: [b, h, l, l]
364
+ """
365
+ batch, heads, length, _ = x.size()
366
+ # Concat columns of pad to shift from relative to absolute indexing.
367
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
368
+
369
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
370
+ x_flat = x.view([batch, heads, length * 2 * length])
371
+ x_flat = F.pad(
372
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
373
+ )
374
+
375
+ # Reshape and slice out the padded elements.
376
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
377
+ :, :, :length, length - 1 :
378
+ ]
379
+ return x_final
380
+
381
+ def _absolute_position_to_relative_position(self, x):
382
+ """
383
+ x: [b, h, l, l]
384
+ ret: [b, h, l, 2*l-1]
385
+ """
386
+ batch, heads, length, _ = x.size()
387
+ # pad along column
388
+ x = F.pad(
389
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
390
+ )
391
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
392
+ # add 0's in the beginning that will skew the elements after reshape
393
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
394
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
395
+ return x_final
396
+
397
+ def _attention_bias_proximal(self, length):
398
+ """Bias for self-attention to encourage attention to close positions.
399
+ Args:
400
+ length: an integer scalar.
401
+ Returns:
402
+ a Tensor with shape [1, 1, length, length]
403
+ """
404
+ r = torch.arange(length, dtype=torch.float32)
405
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
406
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
407
+
408
+
409
+ class FFN(nn.Module):
410
+ def __init__(
411
+ self,
412
+ in_channels,
413
+ out_channels,
414
+ filter_channels,
415
+ kernel_size,
416
+ p_dropout=0.0,
417
+ activation=None,
418
+ causal=False,
419
+ ):
420
+ super().__init__()
421
+ self.in_channels = in_channels
422
+ self.out_channels = out_channels
423
+ self.filter_channels = filter_channels
424
+ self.kernel_size = kernel_size
425
+ self.p_dropout = p_dropout
426
+ self.activation = activation
427
+ self.causal = causal
428
+
429
+ if causal:
430
+ self.padding = self._causal_padding
431
+ else:
432
+ self.padding = self._same_padding
433
+
434
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
435
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
436
+ self.drop = nn.Dropout(p_dropout)
437
+
438
+ def forward(self, x, x_mask):
439
+ x = self.conv_1(self.padding(x * x_mask))
440
+ if self.activation == "gelu":
441
+ x = x * torch.sigmoid(1.702 * x)
442
+ else:
443
+ x = torch.relu(x)
444
+ x = self.drop(x)
445
+ x = self.conv_2(self.padding(x * x_mask))
446
+ return x * x_mask
447
+
448
+ def _causal_padding(self, x):
449
+ if self.kernel_size == 1:
450
+ return x
451
+ pad_l = self.kernel_size - 1
452
+ pad_r = 0
453
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
454
+ x = F.pad(x, commons.convert_pad_shape(padding))
455
+ return x
456
+
457
+ def _same_padding(self, x):
458
+ if self.kernel_size == 1:
459
+ return x
460
+ pad_l = (self.kernel_size - 1) // 2
461
+ pad_r = self.kernel_size // 2
462
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
463
+ x = F.pad(x, commons.convert_pad_shape(padding))
464
+ return x
commons.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+
6
+ def init_weights(m, mean=0.0, std=0.01):
7
+ classname = m.__class__.__name__
8
+ if classname.find("Conv") != -1:
9
+ m.weight.data.normal_(mean, std)
10
+
11
+
12
+ def get_padding(kernel_size, dilation=1):
13
+ return int((kernel_size * dilation - dilation) / 2)
14
+
15
+
16
+ def convert_pad_shape(pad_shape):
17
+ layer = pad_shape[::-1]
18
+ pad_shape = [item for sublist in layer for item in sublist]
19
+ return pad_shape
20
+
21
+
22
+ def intersperse(lst, item):
23
+ result = [item] * (len(lst) * 2 + 1)
24
+ result[1::2] = lst
25
+ return result
26
+
27
+
28
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
29
+ """KL(P||Q)"""
30
+ kl = (logs_q - logs_p) - 0.5
31
+ kl += (
32
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
33
+ )
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ if idx_str < 0:
54
+ i1 = x.size(2) + idx_str
55
+ r1 = x[i, :, i1:]
56
+ r2 = x[i, :, :idx_end]
57
+ ret[i] = torch.cat([r1, r2], dim=1)
58
+ else:
59
+ ret[i] = x[i, :, idx_str:idx_end]
60
+ return ret
61
+
62
+
63
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
64
+ b, d, t = x.size()
65
+ if x_lengths is None:
66
+ x_lengths = t
67
+ ids_str_max = x_lengths - segment_size + 1
68
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
69
+ ret = slice_segments(x, ids_str, segment_size)
70
+ return ret, ids_str
71
+
72
+
73
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
74
+ position = torch.arange(length, dtype=torch.float)
75
+ num_timescales = channels // 2
76
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
77
+ num_timescales - 1
78
+ )
79
+ inv_timescales = min_timescale * torch.exp(
80
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
81
+ )
82
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
83
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
84
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
85
+ signal = signal.view(1, channels, length)
86
+ return signal
87
+
88
+
89
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return x + signal.to(dtype=x.dtype, device=x.device)
93
+
94
+
95
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
96
+ b, channels, length = x.size()
97
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
98
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
99
+
100
+
101
+ def subsequent_mask(length):
102
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
103
+ return mask
104
+
105
+
106
+ @torch.jit.script
107
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
108
+ n_channels_int = n_channels[0]
109
+ in_act = input_a + input_b
110
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
111
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
112
+ acts = t_act * s_act
113
+ return acts
114
+
115
+
116
+ def convert_pad_shape(pad_shape):
117
+ layer = pad_shape[::-1]
118
+ pad_shape = [item for sublist in layer for item in sublist]
119
+ return pad_shape
120
+
121
+
122
+ def shift_1d(x):
123
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
124
+ return x
125
+
126
+
127
+ def sequence_mask(length, max_length=None):
128
+ if max_length is None:
129
+ max_length = length.max()
130
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
131
+ return x.unsqueeze(0) < length.unsqueeze(1)
132
+
133
+
134
+ def generate_path(duration, mask):
135
+ """
136
+ duration: [b, 1, t_x]
137
+ mask: [b, 1, t_y, t_x]
138
+ """
139
+
140
+ b, _, t_y, t_x = mask.shape
141
+ cum_duration = torch.cumsum(duration, -1)
142
+
143
+ cum_duration_flat = cum_duration.view(b * t_x)
144
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
145
+ path = path.view(b, t_x, t_y)
146
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
147
+ path = path.unsqueeze(1).transpose(2, 3) * mask
148
+ return path
149
+
150
+
151
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
152
+ if isinstance(parameters, torch.Tensor):
153
+ parameters = [parameters]
154
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
155
+ norm_type = float(norm_type)
156
+ if clip_value is not None:
157
+ clip_value = float(clip_value)
158
+
159
+ total_norm = 0
160
+ for p in parameters:
161
+ param_norm = p.grad.data.norm(norm_type)
162
+ total_norm += param_norm.item() ** norm_type
163
+ if clip_value is not None:
164
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
165
+ total_norm = total_norm ** (1.0 / norm_type)
166
+ return total_norm
infer.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ import numpy
4
+ import numpy as np
5
+ import pydub
6
+ import torch
7
+
8
+ import commons
9
+ import utils
10
+ from models import SynthesizerTrn
11
+ from text import cleaned_text_to_sequence, get_bert
12
+ from text.cleaner import clean_text
13
+ from text.symbols import symbols
14
+
15
+ # 当前版本信息
16
+ latest_version = "2.0"
17
+
18
+
19
+ def get_net_g(model_path: str, device: str, hps):
20
+ net_g = SynthesizerTrn(
21
+ len(symbols),
22
+ hps.data.filter_length // 2 + 1,
23
+ hps.train.segment_size // hps.data.hop_length,
24
+ n_speakers=hps.data.n_speakers,
25
+ **hps.model,
26
+ ).to(device)
27
+ _ = net_g.eval()
28
+ _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
29
+ return net_g
30
+
31
+
32
+ def get_text(text, language_str, hps, device):
33
+ # 在此处实现当前版本的get_text
34
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
35
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
36
+
37
+ if hps.data.add_blank:
38
+ phone = commons.intersperse(phone, 0)
39
+ tone = commons.intersperse(tone, 0)
40
+ language = commons.intersperse(language, 0)
41
+ for i in range(len(word2ph)):
42
+ word2ph[i] = word2ph[i] * 2
43
+ word2ph[0] += 1
44
+ bert = get_bert(norm_text, word2ph, language_str, device)
45
+ del word2ph
46
+ assert bert.shape[-1] == len(phone), phone
47
+
48
+ if language_str == "ZH":
49
+ bert = bert
50
+ sh_bert = torch.zeros(1024, len(phone))
51
+ en_bert = torch.zeros(1024, len(phone))
52
+ elif language_str == "SH":
53
+ bert = torch.zeros(1024, len(phone))
54
+ sh_bert = bert
55
+ en_bert = torch.zeros(1024, len(phone))
56
+ elif language_str == "EN":
57
+ bert = torch.zeros(1024, len(phone))
58
+ sh_bert = torch.zeros(1024, len(phone))
59
+ en_bert = bert
60
+ else:
61
+ raise ValueError("language_str should be ZH, SH or EN")
62
+
63
+ assert bert.shape[-1] == len(phone), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
64
+
65
+ phone = torch.LongTensor(phone)
66
+ tone = torch.LongTensor(tone)
67
+ language = torch.LongTensor(language)
68
+ return bert, sh_bert, en_bert, phone, tone, language
69
+
70
+
71
+ def infer(
72
+ text,
73
+ sdp_ratio,
74
+ noise_scale,
75
+ noise_scale_w,
76
+ length_scale,
77
+ sid,
78
+ language,
79
+ hps,
80
+ net_g,
81
+ device,
82
+ ):
83
+ bert, sh_bert, en_bert, phones, tones, lang_ids = get_text(text, language, hps, device)
84
+ with torch.no_grad():
85
+ x_tst = phones.to(device).unsqueeze(0)
86
+ tones = tones.to(device).unsqueeze(0)
87
+ lang_ids = lang_ids.to(device).unsqueeze(0)
88
+ bert = bert.to(device).unsqueeze(0)
89
+ sh_bert = sh_bert.to(device).unsqueeze(0)
90
+ en_bert = en_bert.to(device).unsqueeze(0)
91
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
92
+ del phones
93
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
94
+ audio = (
95
+ net_g.infer(
96
+ x_tst,
97
+ x_tst_lengths,
98
+ speakers,
99
+ tones,
100
+ lang_ids,
101
+ bert,
102
+ sh_bert,
103
+ en_bert,
104
+ sdp_ratio=sdp_ratio,
105
+ noise_scale=noise_scale,
106
+ noise_scale_w=noise_scale_w,
107
+ length_scale=length_scale,
108
+ )[0][0, 0]
109
+ .data.cpu()
110
+ .float()
111
+ .numpy()
112
+ )
113
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
114
+ torch.cuda.empty_cache()
115
+ return audio
116
+
117
+
118
+ def main():
119
+ parser = argparse.ArgumentParser()
120
+ parser.add_argument('--config', type=str, default='configs/config.json')
121
+ parser.add_argument('--device', type=str, default='cpu')
122
+ parser.add_argument('--model_path', type=str, default='models/G_1000.pth')
123
+ parser.add_argument('--output', type=str, default='sample')
124
+ args = parser.parse_args()
125
+
126
+ hps = utils.get_hparams_from_file(args.config)
127
+ net_g = get_net_g(args.model_path, device=args.device, hps=hps)
128
+
129
+ # noise_scale = 0.667
130
+ # noise_scale_w = 0.8
131
+ # length_scale = 0.9
132
+
133
+ sdp_ratio = 0
134
+ noise_scale = 0.667
135
+ noise_scale_w = 0.8
136
+ length_scale = 0.9
137
+
138
+ def do_sample(texts, sid, export_tag):
139
+ audio_data = numpy.array([], dtype=numpy.float32)
140
+
141
+ for (sub_text, language) in texts:
142
+ sub_audio_data = infer(sub_text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, args.device)
143
+ audio_data = np.concatenate((audio_data, sub_audio_data))
144
+
145
+ audio_data = audio_data / numpy.abs(audio_data).max()
146
+ audio_data = audio_data * 32767
147
+ audio_data = audio_data.astype(numpy.int16)
148
+ sound = pydub.AudioSegment(audio_data, frame_rate=hps.data.sampling_rate, sample_width=audio_data.dtype.itemsize, channels=1)
149
+ export_filename = args.output + export_tag + sid + '.mp3'
150
+ sound.export(export_filename, format='mp3')
151
+ print(export_filename)
152
+
153
+ text = [('我觉得有点贵。', 'ZH'), ('so expensive, can they?', 'EN'), ('哈巨,吃不消它。', 'SH')]
154
+
155
+ do_sample(text, '小庄', '_1_')
156
+ do_sample(text, '小嘟', '_1_')
157
+ do_sample(text, 'Jane', '_1_')
158
+ do_sample(text, '小贝', '_1_')
159
+ do_sample(text, '老克勒', '_1_')
160
+ do_sample(text, '美琳', '_1_')
161
+
162
+ pass
163
+
164
+
165
+ if __name__ == "__main__":
166
+ main()
mel_processing.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.utils.data
3
+ from librosa.filters import mel as librosa_mel_fn
4
+
5
+ MAX_WAV_VALUE = 32768.0
6
+
7
+
8
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
9
+ """
10
+ PARAMS
11
+ ------
12
+ C: compression factor
13
+ """
14
+ return torch.log(torch.clamp(x, min=clip_val) * C)
15
+
16
+
17
+ def dynamic_range_decompression_torch(x, C=1):
18
+ """
19
+ PARAMS
20
+ ------
21
+ C: compression factor used to compress
22
+ """
23
+ return torch.exp(x) / C
24
+
25
+
26
+ def spectral_normalize_torch(magnitudes):
27
+ output = dynamic_range_compression_torch(magnitudes)
28
+ return output
29
+
30
+
31
+ def spectral_de_normalize_torch(magnitudes):
32
+ output = dynamic_range_decompression_torch(magnitudes)
33
+ return output
34
+
35
+
36
+ mel_basis = {}
37
+ hann_window = {}
38
+
39
+
40
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
41
+ if torch.min(y) < -1.0:
42
+ print("min value is ", torch.min(y))
43
+ if torch.max(y) > 1.0:
44
+ print("max value is ", torch.max(y))
45
+
46
+ global hann_window
47
+ dtype_device = str(y.dtype) + "_" + str(y.device)
48
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
49
+ if wnsize_dtype_device not in hann_window:
50
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
51
+ dtype=y.dtype, device=y.device
52
+ )
53
+
54
+ y = torch.nn.functional.pad(
55
+ y.unsqueeze(1),
56
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
57
+ mode="reflect",
58
+ )
59
+ y = y.squeeze(1)
60
+
61
+ spec = torch.stft(
62
+ y,
63
+ n_fft,
64
+ hop_length=hop_size,
65
+ win_length=win_size,
66
+ window=hann_window[wnsize_dtype_device],
67
+ center=center,
68
+ pad_mode="reflect",
69
+ normalized=False,
70
+ onesided=True,
71
+ return_complex=False,
72
+ )
73
+
74
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
75
+ return spec
76
+
77
+
78
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
79
+ global mel_basis
80
+ dtype_device = str(spec.dtype) + "_" + str(spec.device)
81
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
82
+ if fmax_dtype_device not in mel_basis:
83
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
84
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
85
+ dtype=spec.dtype, device=spec.device
86
+ )
87
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
88
+ spec = spectral_normalize_torch(spec)
89
+ return spec
90
+
91
+
92
+ def mel_spectrogram_torch(
93
+ y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
94
+ ):
95
+ if torch.min(y) < -1.0:
96
+ print("min value is ", torch.min(y))
97
+ if torch.max(y) > 1.0:
98
+ print("max value is ", torch.max(y))
99
+
100
+ global mel_basis, hann_window
101
+ dtype_device = str(y.dtype) + "_" + str(y.device)
102
+ fmax_dtype_device = str(fmax) + "_" + dtype_device
103
+ wnsize_dtype_device = str(win_size) + "_" + dtype_device
104
+ if fmax_dtype_device not in mel_basis:
105
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
106
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
107
+ dtype=y.dtype, device=y.device
108
+ )
109
+ if wnsize_dtype_device not in hann_window:
110
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
111
+ dtype=y.dtype, device=y.device
112
+ )
113
+
114
+ y = torch.nn.functional.pad(
115
+ y.unsqueeze(1),
116
+ (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
117
+ mode="reflect",
118
+ )
119
+ y = y.squeeze(1)
120
+
121
+ spec = torch.stft(
122
+ y,
123
+ n_fft,
124
+ hop_length=hop_size,
125
+ win_length=win_size,
126
+ window=hann_window[wnsize_dtype_device],
127
+ center=center,
128
+ pad_mode="reflect",
129
+ normalized=False,
130
+ onesided=True,
131
+ return_complex=False,
132
+ )
133
+
134
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
135
+
136
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
137
+ spec = spectral_normalize_torch(spec)
138
+
139
+ return spec
models.py ADDED
@@ -0,0 +1,1002 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ import commons
7
+ import modules
8
+ import attentions
9
+ import monotonic_align
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+
14
+ from commons import init_weights, get_padding
15
+ from text import symbols, num_tones, num_languages
16
+
17
+
18
+ class DurationDiscriminator(nn.Module): # vits2
19
+ def __init__(
20
+ self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
21
+ ):
22
+ super().__init__()
23
+
24
+ self.in_channels = in_channels
25
+ self.filter_channels = filter_channels
26
+ self.kernel_size = kernel_size
27
+ self.p_dropout = p_dropout
28
+ self.gin_channels = gin_channels
29
+
30
+ self.drop = nn.Dropout(p_dropout)
31
+ self.conv_1 = nn.Conv1d(
32
+ in_channels, filter_channels, kernel_size, padding=kernel_size // 2
33
+ )
34
+ self.norm_1 = modules.LayerNorm(filter_channels)
35
+ self.conv_2 = nn.Conv1d(
36
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
37
+ )
38
+ self.norm_2 = modules.LayerNorm(filter_channels)
39
+ self.dur_proj = nn.Conv1d(1, filter_channels, 1)
40
+
41
+ self.pre_out_conv_1 = nn.Conv1d(
42
+ 2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
43
+ )
44
+ self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
45
+ self.pre_out_conv_2 = nn.Conv1d(
46
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
47
+ )
48
+ self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
49
+
50
+ if gin_channels != 0:
51
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
52
+
53
+ self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
54
+
55
+ def forward_probability(self, x, x_mask, dur, g=None):
56
+ dur = self.dur_proj(dur)
57
+ x = torch.cat([x, dur], dim=1)
58
+ x = self.pre_out_conv_1(x * x_mask)
59
+ x = torch.relu(x)
60
+ x = self.pre_out_norm_1(x)
61
+ x = self.drop(x)
62
+ x = self.pre_out_conv_2(x * x_mask)
63
+ x = torch.relu(x)
64
+ x = self.pre_out_norm_2(x)
65
+ x = self.drop(x)
66
+ x = x * x_mask
67
+ x = x.transpose(1, 2)
68
+ output_prob = self.output_layer(x)
69
+ return output_prob
70
+
71
+ def forward(self, x, x_mask, dur_r, dur_hat, g=None):
72
+ x = torch.detach(x)
73
+ if g is not None:
74
+ g = torch.detach(g)
75
+ x = x + self.cond(g)
76
+ x = self.conv_1(x * x_mask)
77
+ x = torch.relu(x)
78
+ x = self.norm_1(x)
79
+ x = self.drop(x)
80
+ x = self.conv_2(x * x_mask)
81
+ x = torch.relu(x)
82
+ x = self.norm_2(x)
83
+ x = self.drop(x)
84
+
85
+ output_probs = []
86
+ for dur in [dur_r, dur_hat]:
87
+ output_prob = self.forward_probability(x, x_mask, dur, g)
88
+ output_probs.append(output_prob)
89
+
90
+ return output_probs
91
+
92
+
93
+ class TransformerCouplingBlock(nn.Module):
94
+ def __init__(
95
+ self,
96
+ channels,
97
+ hidden_channels,
98
+ filter_channels,
99
+ n_heads,
100
+ n_layers,
101
+ kernel_size,
102
+ p_dropout,
103
+ n_flows=4,
104
+ gin_channels=0,
105
+ share_parameter=False,
106
+ ):
107
+ super().__init__()
108
+ self.channels = channels
109
+ self.hidden_channels = hidden_channels
110
+ self.kernel_size = kernel_size
111
+ self.n_layers = n_layers
112
+ self.n_flows = n_flows
113
+ self.gin_channels = gin_channels
114
+
115
+ self.flows = nn.ModuleList()
116
+
117
+ self.wn = (
118
+ attentions.FFT(
119
+ hidden_channels,
120
+ filter_channels,
121
+ n_heads,
122
+ n_layers,
123
+ kernel_size,
124
+ p_dropout,
125
+ isflow=True,
126
+ gin_channels=self.gin_channels,
127
+ )
128
+ if share_parameter
129
+ else None
130
+ )
131
+
132
+ for i in range(n_flows):
133
+ self.flows.append(
134
+ modules.TransformerCouplingLayer(
135
+ channels,
136
+ hidden_channels,
137
+ kernel_size,
138
+ n_layers,
139
+ n_heads,
140
+ p_dropout,
141
+ filter_channels,
142
+ mean_only=True,
143
+ wn_sharing_parameter=self.wn,
144
+ gin_channels=self.gin_channels,
145
+ )
146
+ )
147
+ self.flows.append(modules.Flip())
148
+
149
+ def forward(self, x, x_mask, g=None, reverse=False):
150
+ if not reverse:
151
+ for flow in self.flows:
152
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
153
+ else:
154
+ for flow in reversed(self.flows):
155
+ x = flow(x, x_mask, g=g, reverse=reverse)
156
+ return x
157
+
158
+
159
+ class StochasticDurationPredictor(nn.Module):
160
+ def __init__(
161
+ self,
162
+ in_channels,
163
+ filter_channels,
164
+ kernel_size,
165
+ p_dropout,
166
+ n_flows=4,
167
+ gin_channels=0,
168
+ ):
169
+ super().__init__()
170
+ filter_channels = in_channels # it needs to be removed from future version.
171
+ self.in_channels = in_channels
172
+ self.filter_channels = filter_channels
173
+ self.kernel_size = kernel_size
174
+ self.p_dropout = p_dropout
175
+ self.n_flows = n_flows
176
+ self.gin_channels = gin_channels
177
+
178
+ self.log_flow = modules.Log()
179
+ self.flows = nn.ModuleList()
180
+ self.flows.append(modules.ElementwiseAffine(2))
181
+ for i in range(n_flows):
182
+ self.flows.append(
183
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
184
+ )
185
+ self.flows.append(modules.Flip())
186
+
187
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
188
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
189
+ self.post_convs = modules.DDSConv(
190
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
191
+ )
192
+ self.post_flows = nn.ModuleList()
193
+ self.post_flows.append(modules.ElementwiseAffine(2))
194
+ for i in range(4):
195
+ self.post_flows.append(
196
+ modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
197
+ )
198
+ self.post_flows.append(modules.Flip())
199
+
200
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
201
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
202
+ self.convs = modules.DDSConv(
203
+ filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
204
+ )
205
+ if gin_channels != 0:
206
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
207
+
208
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
209
+ x = torch.detach(x)
210
+ x = self.pre(x)
211
+ if g is not None:
212
+ g = torch.detach(g)
213
+ x = x + self.cond(g)
214
+ x = self.convs(x, x_mask)
215
+ x = self.proj(x) * x_mask
216
+
217
+ if not reverse:
218
+ flows = self.flows
219
+ assert w is not None
220
+
221
+ logdet_tot_q = 0
222
+ h_w = self.post_pre(w)
223
+ h_w = self.post_convs(h_w, x_mask)
224
+ h_w = self.post_proj(h_w) * x_mask
225
+ e_q = (
226
+ torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
227
+ * x_mask
228
+ )
229
+ z_q = e_q
230
+ for flow in self.post_flows:
231
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
232
+ logdet_tot_q += logdet_q
233
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
234
+ u = torch.sigmoid(z_u) * x_mask
235
+ z0 = (w - u) * x_mask
236
+ logdet_tot_q += torch.sum(
237
+ (F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
238
+ )
239
+ logq = (
240
+ torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
241
+ - logdet_tot_q
242
+ )
243
+
244
+ logdet_tot = 0
245
+ z0, logdet = self.log_flow(z0, x_mask)
246
+ logdet_tot += logdet
247
+ z = torch.cat([z0, z1], 1)
248
+ for flow in flows:
249
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
250
+ logdet_tot = logdet_tot + logdet
251
+ nll = (
252
+ torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
253
+ - logdet_tot
254
+ )
255
+ return nll + logq # [b]
256
+ else:
257
+ flows = list(reversed(self.flows))
258
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
259
+ z = (
260
+ torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
261
+ * noise_scale
262
+ )
263
+ for flow in flows:
264
+ z = flow(z, x_mask, g=x, reverse=reverse)
265
+ z0, z1 = torch.split(z, [1, 1], 1)
266
+ logw = z0
267
+ return logw
268
+
269
+
270
+ class DurationPredictor(nn.Module):
271
+ def __init__(
272
+ self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
273
+ ):
274
+ super().__init__()
275
+
276
+ self.in_channels = in_channels
277
+ self.filter_channels = filter_channels
278
+ self.kernel_size = kernel_size
279
+ self.p_dropout = p_dropout
280
+ self.gin_channels = gin_channels
281
+
282
+ self.drop = nn.Dropout(p_dropout)
283
+ self.conv_1 = nn.Conv1d(
284
+ in_channels, filter_channels, kernel_size, padding=kernel_size // 2
285
+ )
286
+ self.norm_1 = modules.LayerNorm(filter_channels)
287
+ self.conv_2 = nn.Conv1d(
288
+ filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
289
+ )
290
+ self.norm_2 = modules.LayerNorm(filter_channels)
291
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
292
+
293
+ if gin_channels != 0:
294
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
295
+
296
+ def forward(self, x, x_mask, g=None):
297
+ x = torch.detach(x)
298
+ if g is not None:
299
+ g = torch.detach(g)
300
+ x = x + self.cond(g)
301
+ x = self.conv_1(x * x_mask)
302
+ x = torch.relu(x)
303
+ x = self.norm_1(x)
304
+ x = self.drop(x)
305
+ x = self.conv_2(x * x_mask)
306
+ x = torch.relu(x)
307
+ x = self.norm_2(x)
308
+ x = self.drop(x)
309
+ x = self.proj(x * x_mask)
310
+ return x * x_mask
311
+
312
+
313
+ class TextEncoder(nn.Module):
314
+ def __init__(
315
+ self,
316
+ n_vocab,
317
+ out_channels,
318
+ hidden_channels,
319
+ filter_channels,
320
+ n_heads,
321
+ n_layers,
322
+ kernel_size,
323
+ p_dropout,
324
+ gin_channels=0,
325
+ ):
326
+ super().__init__()
327
+ self.n_vocab = n_vocab
328
+ self.out_channels = out_channels
329
+ self.hidden_channels = hidden_channels
330
+ self.filter_channels = filter_channels
331
+ self.n_heads = n_heads
332
+ self.n_layers = n_layers
333
+ self.kernel_size = kernel_size
334
+ self.p_dropout = p_dropout
335
+ self.gin_channels = gin_channels
336
+ self.emb = nn.Embedding(len(symbols), hidden_channels)
337
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
338
+ self.tone_emb = nn.Embedding(num_tones, hidden_channels)
339
+ nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
340
+ self.language_emb = nn.Embedding(num_languages, hidden_channels)
341
+ nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
342
+ self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
343
+ self.ja_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
344
+ self.en_bert_proj = nn.Conv1d(1024, hidden_channels, 1)
345
+
346
+ self.encoder = attentions.Encoder(
347
+ hidden_channels,
348
+ filter_channels,
349
+ n_heads,
350
+ n_layers,
351
+ kernel_size,
352
+ p_dropout,
353
+ gin_channels=self.gin_channels,
354
+ )
355
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
356
+
357
+ def forward(self, x, x_lengths, tone, language, bert, ja_bert, en_bert, g=None):
358
+ bert_emb = self.bert_proj(bert).transpose(1, 2)
359
+ ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
360
+ en_bert_emb = self.en_bert_proj(en_bert).transpose(1, 2)
361
+ x = (
362
+ self.emb(x)
363
+ + self.tone_emb(tone)
364
+ + self.language_emb(language)
365
+ + bert_emb
366
+ + ja_bert_emb
367
+ + en_bert_emb
368
+ ) * math.sqrt(
369
+ self.hidden_channels
370
+ ) # [b, t, h]
371
+ x = torch.transpose(x, 1, -1) # [b, h, t]
372
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
373
+ x.dtype
374
+ )
375
+
376
+ x = self.encoder(x * x_mask, x_mask, g=g)
377
+ stats = self.proj(x) * x_mask
378
+
379
+ m, logs = torch.split(stats, self.out_channels, dim=1)
380
+ return x, m, logs, x_mask
381
+
382
+
383
+ class ResidualCouplingBlock(nn.Module):
384
+ def __init__(
385
+ self,
386
+ channels,
387
+ hidden_channels,
388
+ kernel_size,
389
+ dilation_rate,
390
+ n_layers,
391
+ n_flows=4,
392
+ gin_channels=0,
393
+ ):
394
+ super().__init__()
395
+ self.channels = channels
396
+ self.hidden_channels = hidden_channels
397
+ self.kernel_size = kernel_size
398
+ self.dilation_rate = dilation_rate
399
+ self.n_layers = n_layers
400
+ self.n_flows = n_flows
401
+ self.gin_channels = gin_channels
402
+
403
+ self.flows = nn.ModuleList()
404
+ for i in range(n_flows):
405
+ self.flows.append(
406
+ modules.ResidualCouplingLayer(
407
+ channels,
408
+ hidden_channels,
409
+ kernel_size,
410
+ dilation_rate,
411
+ n_layers,
412
+ gin_channels=gin_channels,
413
+ mean_only=True,
414
+ )
415
+ )
416
+ self.flows.append(modules.Flip())
417
+
418
+ def forward(self, x, x_mask, g=None, reverse=False):
419
+ if not reverse:
420
+ for flow in self.flows:
421
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
422
+ else:
423
+ for flow in reversed(self.flows):
424
+ x = flow(x, x_mask, g=g, reverse=reverse)
425
+ return x
426
+
427
+
428
+ class PosteriorEncoder(nn.Module):
429
+ def __init__(
430
+ self,
431
+ in_channels,
432
+ out_channels,
433
+ hidden_channels,
434
+ kernel_size,
435
+ dilation_rate,
436
+ n_layers,
437
+ gin_channels=0,
438
+ ):
439
+ super().__init__()
440
+ self.in_channels = in_channels
441
+ self.out_channels = out_channels
442
+ self.hidden_channels = hidden_channels
443
+ self.kernel_size = kernel_size
444
+ self.dilation_rate = dilation_rate
445
+ self.n_layers = n_layers
446
+ self.gin_channels = gin_channels
447
+
448
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
449
+ self.enc = modules.WN(
450
+ hidden_channels,
451
+ kernel_size,
452
+ dilation_rate,
453
+ n_layers,
454
+ gin_channels=gin_channels,
455
+ )
456
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
457
+
458
+ def forward(self, x, x_lengths, g=None):
459
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
460
+ x.dtype
461
+ )
462
+ x = self.pre(x) * x_mask
463
+ x = self.enc(x, x_mask, g=g)
464
+ stats = self.proj(x) * x_mask
465
+ m, logs = torch.split(stats, self.out_channels, dim=1)
466
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
467
+ return z, m, logs, x_mask
468
+
469
+
470
+ class Generator(torch.nn.Module):
471
+ def __init__(
472
+ self,
473
+ initial_channel,
474
+ resblock,
475
+ resblock_kernel_sizes,
476
+ resblock_dilation_sizes,
477
+ upsample_rates,
478
+ upsample_initial_channel,
479
+ upsample_kernel_sizes,
480
+ gin_channels=0,
481
+ ):
482
+ super(Generator, self).__init__()
483
+ self.num_kernels = len(resblock_kernel_sizes)
484
+ self.num_upsamples = len(upsample_rates)
485
+ self.conv_pre = Conv1d(
486
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
487
+ )
488
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
489
+
490
+ self.ups = nn.ModuleList()
491
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
492
+ self.ups.append(
493
+ weight_norm(
494
+ ConvTranspose1d(
495
+ upsample_initial_channel // (2**i),
496
+ upsample_initial_channel // (2 ** (i + 1)),
497
+ k,
498
+ u,
499
+ padding=(k - u) // 2,
500
+ )
501
+ )
502
+ )
503
+
504
+ self.resblocks = nn.ModuleList()
505
+ for i in range(len(self.ups)):
506
+ ch = upsample_initial_channel // (2 ** (i + 1))
507
+ for j, (k, d) in enumerate(
508
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
509
+ ):
510
+ self.resblocks.append(resblock(ch, k, d))
511
+
512
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
513
+ self.ups.apply(init_weights)
514
+
515
+ if gin_channels != 0:
516
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
517
+
518
+ def forward(self, x, g=None):
519
+ x = self.conv_pre(x)
520
+ if g is not None:
521
+ x = x + self.cond(g)
522
+
523
+ for i in range(self.num_upsamples):
524
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
525
+ x = self.ups[i](x)
526
+ xs = None
527
+ for j in range(self.num_kernels):
528
+ if xs is None:
529
+ xs = self.resblocks[i * self.num_kernels + j](x)
530
+ else:
531
+ xs += self.resblocks[i * self.num_kernels + j](x)
532
+ x = xs / self.num_kernels
533
+ x = F.leaky_relu(x)
534
+ x = self.conv_post(x)
535
+ x = torch.tanh(x)
536
+
537
+ return x
538
+
539
+ def remove_weight_norm(self):
540
+ print("Removing weight norm...")
541
+ for layer in self.ups:
542
+ remove_weight_norm(layer)
543
+ for layer in self.resblocks:
544
+ layer.remove_weight_norm()
545
+
546
+
547
+ class DiscriminatorP(torch.nn.Module):
548
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
549
+ super(DiscriminatorP, self).__init__()
550
+ self.period = period
551
+ self.use_spectral_norm = use_spectral_norm
552
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
553
+ self.convs = nn.ModuleList(
554
+ [
555
+ norm_f(
556
+ Conv2d(
557
+ 1,
558
+ 32,
559
+ (kernel_size, 1),
560
+ (stride, 1),
561
+ padding=(get_padding(kernel_size, 1), 0),
562
+ )
563
+ ),
564
+ norm_f(
565
+ Conv2d(
566
+ 32,
567
+ 128,
568
+ (kernel_size, 1),
569
+ (stride, 1),
570
+ padding=(get_padding(kernel_size, 1), 0),
571
+ )
572
+ ),
573
+ norm_f(
574
+ Conv2d(
575
+ 128,
576
+ 512,
577
+ (kernel_size, 1),
578
+ (stride, 1),
579
+ padding=(get_padding(kernel_size, 1), 0),
580
+ )
581
+ ),
582
+ norm_f(
583
+ Conv2d(
584
+ 512,
585
+ 1024,
586
+ (kernel_size, 1),
587
+ (stride, 1),
588
+ padding=(get_padding(kernel_size, 1), 0),
589
+ )
590
+ ),
591
+ norm_f(
592
+ Conv2d(
593
+ 1024,
594
+ 1024,
595
+ (kernel_size, 1),
596
+ 1,
597
+ padding=(get_padding(kernel_size, 1), 0),
598
+ )
599
+ ),
600
+ ]
601
+ )
602
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
603
+
604
+ def forward(self, x):
605
+ fmap = []
606
+
607
+ # 1d to 2d
608
+ b, c, t = x.shape
609
+ if t % self.period != 0: # pad first
610
+ n_pad = self.period - (t % self.period)
611
+ x = F.pad(x, (0, n_pad), "reflect")
612
+ t = t + n_pad
613
+ x = x.view(b, c, t // self.period, self.period)
614
+
615
+ for layer in self.convs:
616
+ x = layer(x)
617
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
618
+ fmap.append(x)
619
+ x = self.conv_post(x)
620
+ fmap.append(x)
621
+ x = torch.flatten(x, 1, -1)
622
+
623
+ return x, fmap
624
+
625
+
626
+ class DiscriminatorS(torch.nn.Module):
627
+ def __init__(self, use_spectral_norm=False):
628
+ super(DiscriminatorS, self).__init__()
629
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
630
+ self.convs = nn.ModuleList(
631
+ [
632
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
633
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
634
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
635
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
636
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
637
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
638
+ ]
639
+ )
640
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
641
+
642
+ def forward(self, x):
643
+ fmap = []
644
+
645
+ for layer in self.convs:
646
+ x = layer(x)
647
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
648
+ fmap.append(x)
649
+ x = self.conv_post(x)
650
+ fmap.append(x)
651
+ x = torch.flatten(x, 1, -1)
652
+
653
+ return x, fmap
654
+
655
+
656
+ class MultiPeriodDiscriminator(torch.nn.Module):
657
+ def __init__(self, use_spectral_norm=False):
658
+ super(MultiPeriodDiscriminator, self).__init__()
659
+ periods = [2, 3, 5, 7, 11]
660
+
661
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
662
+ discs = discs + [
663
+ DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
664
+ ]
665
+ self.discriminators = nn.ModuleList(discs)
666
+
667
+ def forward(self, y, y_hat):
668
+ y_d_rs = []
669
+ y_d_gs = []
670
+ fmap_rs = []
671
+ fmap_gs = []
672
+ for i, d in enumerate(self.discriminators):
673
+ y_d_r, fmap_r = d(y)
674
+ y_d_g, fmap_g = d(y_hat)
675
+ y_d_rs.append(y_d_r)
676
+ y_d_gs.append(y_d_g)
677
+ fmap_rs.append(fmap_r)
678
+ fmap_gs.append(fmap_g)
679
+
680
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
681
+
682
+
683
+ class ReferenceEncoder(nn.Module):
684
+ """
685
+ inputs --- [N, Ty/r, n_mels*r] mels
686
+ outputs --- [N, ref_enc_gru_size]
687
+ """
688
+
689
+ def __init__(self, spec_channels, gin_channels=0):
690
+ super().__init__()
691
+ self.spec_channels = spec_channels
692
+ ref_enc_filters = [32, 32, 64, 64, 128, 128]
693
+ K = len(ref_enc_filters)
694
+ filters = [1] + ref_enc_filters
695
+ convs = [
696
+ weight_norm(
697
+ nn.Conv2d(
698
+ in_channels=filters[i],
699
+ out_channels=filters[i + 1],
700
+ kernel_size=(3, 3),
701
+ stride=(2, 2),
702
+ padding=(1, 1),
703
+ )
704
+ )
705
+ for i in range(K)
706
+ ]
707
+ self.convs = nn.ModuleList(convs)
708
+ # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
709
+
710
+ out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
711
+ self.gru = nn.GRU(
712
+ input_size=ref_enc_filters[-1] * out_channels,
713
+ hidden_size=256 // 2,
714
+ batch_first=True,
715
+ )
716
+ self.proj = nn.Linear(128, gin_channels)
717
+
718
+ def forward(self, inputs, mask=None):
719
+ N = inputs.size(0)
720
+ out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
721
+ for conv in self.convs:
722
+ out = conv(out)
723
+ # out = wn(out)
724
+ out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
725
+
726
+ out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
727
+ T = out.size(1)
728
+ N = out.size(0)
729
+ out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
730
+
731
+ self.gru.flatten_parameters()
732
+ memory, out = self.gru(out) # out --- [1, N, 128]
733
+
734
+ return self.proj(out.squeeze(0))
735
+
736
+ def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
737
+ for i in range(n_convs):
738
+ L = (L - kernel_size + 2 * pad) // stride + 1
739
+ return L
740
+
741
+
742
+ class SynthesizerTrn(nn.Module):
743
+ """
744
+ Synthesizer for Training
745
+ """
746
+
747
+ def __init__(
748
+ self,
749
+ n_vocab,
750
+ spec_channels,
751
+ segment_size,
752
+ inter_channels,
753
+ hidden_channels,
754
+ filter_channels,
755
+ n_heads,
756
+ n_layers,
757
+ kernel_size,
758
+ p_dropout,
759
+ resblock,
760
+ resblock_kernel_sizes,
761
+ resblock_dilation_sizes,
762
+ upsample_rates,
763
+ upsample_initial_channel,
764
+ upsample_kernel_sizes,
765
+ n_speakers=256,
766
+ gin_channels=256,
767
+ use_sdp=True,
768
+ n_flow_layer=4,
769
+ n_layers_trans_flow=4,
770
+ flow_share_parameter=False,
771
+ use_transformer_flow=True,
772
+ **kwargs
773
+ ):
774
+ super().__init__()
775
+ self.n_vocab = n_vocab
776
+ self.spec_channels = spec_channels
777
+ self.inter_channels = inter_channels
778
+ self.hidden_channels = hidden_channels
779
+ self.filter_channels = filter_channels
780
+ self.n_heads = n_heads
781
+ self.n_layers = n_layers
782
+ self.kernel_size = kernel_size
783
+ self.p_dropout = p_dropout
784
+ self.resblock = resblock
785
+ self.resblock_kernel_sizes = resblock_kernel_sizes
786
+ self.resblock_dilation_sizes = resblock_dilation_sizes
787
+ self.upsample_rates = upsample_rates
788
+ self.upsample_initial_channel = upsample_initial_channel
789
+ self.upsample_kernel_sizes = upsample_kernel_sizes
790
+ self.segment_size = segment_size
791
+ self.n_speakers = n_speakers
792
+ self.gin_channels = gin_channels
793
+ self.n_layers_trans_flow = n_layers_trans_flow
794
+ self.use_spk_conditioned_encoder = kwargs.get(
795
+ "use_spk_conditioned_encoder", True
796
+ )
797
+ self.use_sdp = use_sdp
798
+ self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
799
+ self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
800
+ self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
801
+ self.current_mas_noise_scale = self.mas_noise_scale_initial
802
+ if self.use_spk_conditioned_encoder and gin_channels > 0:
803
+ self.enc_gin_channels = gin_channels
804
+ self.enc_p = TextEncoder(
805
+ n_vocab,
806
+ inter_channels,
807
+ hidden_channels,
808
+ filter_channels,
809
+ n_heads,
810
+ n_layers,
811
+ kernel_size,
812
+ p_dropout,
813
+ gin_channels=self.enc_gin_channels,
814
+ )
815
+ self.dec = Generator(
816
+ inter_channels,
817
+ resblock,
818
+ resblock_kernel_sizes,
819
+ resblock_dilation_sizes,
820
+ upsample_rates,
821
+ upsample_initial_channel,
822
+ upsample_kernel_sizes,
823
+ gin_channels=gin_channels,
824
+ )
825
+ self.enc_q = PosteriorEncoder(
826
+ spec_channels,
827
+ inter_channels,
828
+ hidden_channels,
829
+ 5,
830
+ 1,
831
+ 16,
832
+ gin_channels=gin_channels,
833
+ )
834
+ if use_transformer_flow:
835
+ self.flow = TransformerCouplingBlock(
836
+ inter_channels,
837
+ hidden_channels,
838
+ filter_channels,
839
+ n_heads,
840
+ n_layers_trans_flow,
841
+ 5,
842
+ p_dropout,
843
+ n_flow_layer,
844
+ gin_channels=gin_channels,
845
+ share_parameter=flow_share_parameter,
846
+ )
847
+ else:
848
+ self.flow = ResidualCouplingBlock(
849
+ inter_channels,
850
+ hidden_channels,
851
+ 5,
852
+ 1,
853
+ n_flow_layer,
854
+ gin_channels=gin_channels,
855
+ )
856
+ self.sdp = StochasticDurationPredictor(
857
+ hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
858
+ )
859
+ self.dp = DurationPredictor(
860
+ hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
861
+ )
862
+
863
+ if n_speakers > 1:
864
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
865
+ else:
866
+ self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
867
+
868
+ def forward(
869
+ self,
870
+ x,
871
+ x_lengths,
872
+ y,
873
+ y_lengths,
874
+ sid,
875
+ tone,
876
+ language,
877
+ bert,
878
+ ja_bert,
879
+ en_bert,
880
+ ):
881
+ if self.n_speakers > 0:
882
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
883
+ else:
884
+ g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
885
+ x, m_p, logs_p, x_mask = self.enc_p(
886
+ x, x_lengths, tone, language, bert, ja_bert, en_bert, g=g
887
+ )
888
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
889
+ z_p = self.flow(z, y_mask, g=g)
890
+
891
+ with torch.no_grad():
892
+ # negative cross-entropy
893
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
894
+ neg_cent1 = torch.sum(
895
+ -0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
896
+ ) # [b, 1, t_s]
897
+ neg_cent2 = torch.matmul(
898
+ -0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
899
+ ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
900
+ neg_cent3 = torch.matmul(
901
+ z_p.transpose(1, 2), (m_p * s_p_sq_r)
902
+ ) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
903
+ neg_cent4 = torch.sum(
904
+ -0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
905
+ ) # [b, 1, t_s]
906
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
907
+ if self.use_noise_scaled_mas:
908
+ epsilon = (
909
+ torch.std(neg_cent)
910
+ * torch.randn_like(neg_cent)
911
+ * self.current_mas_noise_scale
912
+ )
913
+ neg_cent = neg_cent + epsilon
914
+
915
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
916
+ attn = (
917
+ monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
918
+ .unsqueeze(1)
919
+ .detach()
920
+ )
921
+
922
+ w = attn.sum(2)
923
+
924
+ l_length_sdp = self.sdp(x, x_mask, w, g=g)
925
+ l_length_sdp = l_length_sdp / torch.sum(x_mask)
926
+
927
+ logw_ = torch.log(w + 1e-6) * x_mask
928
+ logw = self.dp(x, x_mask, g=g)
929
+ l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
930
+ x_mask
931
+ ) # for averaging
932
+
933
+ l_length = l_length_dp + l_length_sdp
934
+
935
+ # expand prior
936
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
937
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
938
+
939
+ z_slice, ids_slice = commons.rand_slice_segments(
940
+ z, y_lengths, self.segment_size
941
+ )
942
+ o = self.dec(z_slice, g=g)
943
+ return (
944
+ o,
945
+ l_length,
946
+ attn,
947
+ ids_slice,
948
+ x_mask,
949
+ y_mask,
950
+ (z, z_p, m_p, logs_p, m_q, logs_q),
951
+ (x, logw, logw_),
952
+ )
953
+
954
+ def infer(
955
+ self,
956
+ x,
957
+ x_lengths,
958
+ sid,
959
+ tone,
960
+ language,
961
+ bert,
962
+ ja_bert,
963
+ en_bert,
964
+ noise_scale=0.667,
965
+ length_scale=1,
966
+ noise_scale_w=0.8,
967
+ max_len=None,
968
+ sdp_ratio=0,
969
+ y=None,
970
+ ):
971
+ # x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
972
+ # g = self.gst(y)
973
+ if self.n_speakers > 0:
974
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
975
+ else:
976
+ g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
977
+ x, m_p, logs_p, x_mask = self.enc_p(
978
+ x, x_lengths, tone, language, bert, ja_bert, en_bert, g=g
979
+ )
980
+ logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
981
+ sdp_ratio
982
+ ) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
983
+ w = torch.exp(logw) * x_mask * length_scale
984
+ w_ceil = torch.ceil(w)
985
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
986
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
987
+ x_mask.dtype
988
+ )
989
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
990
+ attn = commons.generate_path(w_ceil, attn_mask)
991
+
992
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
993
+ 1, 2
994
+ ) # [b, t', t], [b, t, d] -> [b, d, t']
995
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
996
+ 1, 2
997
+ ) # [b, t', t], [b, t, d] -> [b, d, t']
998
+
999
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
1000
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
1001
+ o = self.dec((z * y_mask)[:, :, :max_len], g=g)
1002
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
modules.py ADDED
@@ -0,0 +1,597 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn
4
+ from torch.nn import functional as F
5
+
6
+ from torch.nn import Conv1d
7
+ from torch.nn.utils import weight_norm, remove_weight_norm
8
+
9
+ import commons
10
+ from commons import init_weights, get_padding
11
+ from transforms import piecewise_rational_quadratic_transform
12
+ from attentions import Encoder
13
+
14
+ LRELU_SLOPE = 0.1
15
+
16
+
17
+ class LayerNorm(nn.Module):
18
+ def __init__(self, channels, eps=1e-5):
19
+ super().__init__()
20
+ self.channels = channels
21
+ self.eps = eps
22
+
23
+ self.gamma = nn.Parameter(torch.ones(channels))
24
+ self.beta = nn.Parameter(torch.zeros(channels))
25
+
26
+ def forward(self, x):
27
+ x = x.transpose(1, -1)
28
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
29
+ return x.transpose(1, -1)
30
+
31
+
32
+ class ConvReluNorm(nn.Module):
33
+ def __init__(
34
+ self,
35
+ in_channels,
36
+ hidden_channels,
37
+ out_channels,
38
+ kernel_size,
39
+ n_layers,
40
+ p_dropout,
41
+ ):
42
+ super().__init__()
43
+ self.in_channels = in_channels
44
+ self.hidden_channels = hidden_channels
45
+ self.out_channels = out_channels
46
+ self.kernel_size = kernel_size
47
+ self.n_layers = n_layers
48
+ self.p_dropout = p_dropout
49
+ assert n_layers > 1, "Number of layers should be larger than 0."
50
+
51
+ self.conv_layers = nn.ModuleList()
52
+ self.norm_layers = nn.ModuleList()
53
+ self.conv_layers.append(
54
+ nn.Conv1d(
55
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
56
+ )
57
+ )
58
+ self.norm_layers.append(LayerNorm(hidden_channels))
59
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
60
+ for _ in range(n_layers - 1):
61
+ self.conv_layers.append(
62
+ nn.Conv1d(
63
+ hidden_channels,
64
+ hidden_channels,
65
+ kernel_size,
66
+ padding=kernel_size // 2,
67
+ )
68
+ )
69
+ self.norm_layers.append(LayerNorm(hidden_channels))
70
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
71
+ self.proj.weight.data.zero_()
72
+ self.proj.bias.data.zero_()
73
+
74
+ def forward(self, x, x_mask):
75
+ x_org = x
76
+ for i in range(self.n_layers):
77
+ x = self.conv_layers[i](x * x_mask)
78
+ x = self.norm_layers[i](x)
79
+ x = self.relu_drop(x)
80
+ x = x_org + self.proj(x)
81
+ return x * x_mask
82
+
83
+
84
+ class DDSConv(nn.Module):
85
+ """
86
+ Dialted and Depth-Separable Convolution
87
+ """
88
+
89
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
90
+ super().__init__()
91
+ self.channels = channels
92
+ self.kernel_size = kernel_size
93
+ self.n_layers = n_layers
94
+ self.p_dropout = p_dropout
95
+
96
+ self.drop = nn.Dropout(p_dropout)
97
+ self.convs_sep = nn.ModuleList()
98
+ self.convs_1x1 = nn.ModuleList()
99
+ self.norms_1 = nn.ModuleList()
100
+ self.norms_2 = nn.ModuleList()
101
+ for i in range(n_layers):
102
+ dilation = kernel_size**i
103
+ padding = (kernel_size * dilation - dilation) // 2
104
+ self.convs_sep.append(
105
+ nn.Conv1d(
106
+ channels,
107
+ channels,
108
+ kernel_size,
109
+ groups=channels,
110
+ dilation=dilation,
111
+ padding=padding,
112
+ )
113
+ )
114
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
115
+ self.norms_1.append(LayerNorm(channels))
116
+ self.norms_2.append(LayerNorm(channels))
117
+
118
+ def forward(self, x, x_mask, g=None):
119
+ if g is not None:
120
+ x = x + g
121
+ for i in range(self.n_layers):
122
+ y = self.convs_sep[i](x * x_mask)
123
+ y = self.norms_1[i](y)
124
+ y = F.gelu(y)
125
+ y = self.convs_1x1[i](y)
126
+ y = self.norms_2[i](y)
127
+ y = F.gelu(y)
128
+ y = self.drop(y)
129
+ x = x + y
130
+ return x * x_mask
131
+
132
+
133
+ class WN(torch.nn.Module):
134
+ def __init__(
135
+ self,
136
+ hidden_channels,
137
+ kernel_size,
138
+ dilation_rate,
139
+ n_layers,
140
+ gin_channels=0,
141
+ p_dropout=0,
142
+ ):
143
+ super(WN, self).__init__()
144
+ assert kernel_size % 2 == 1
145
+ self.hidden_channels = hidden_channels
146
+ self.kernel_size = (kernel_size,)
147
+ self.dilation_rate = dilation_rate
148
+ self.n_layers = n_layers
149
+ self.gin_channels = gin_channels
150
+ self.p_dropout = p_dropout
151
+
152
+ self.in_layers = torch.nn.ModuleList()
153
+ self.res_skip_layers = torch.nn.ModuleList()
154
+ self.drop = nn.Dropout(p_dropout)
155
+
156
+ if gin_channels != 0:
157
+ cond_layer = torch.nn.Conv1d(
158
+ gin_channels, 2 * hidden_channels * n_layers, 1
159
+ )
160
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
161
+
162
+ for i in range(n_layers):
163
+ dilation = dilation_rate**i
164
+ padding = int((kernel_size * dilation - dilation) / 2)
165
+ in_layer = torch.nn.Conv1d(
166
+ hidden_channels,
167
+ 2 * hidden_channels,
168
+ kernel_size,
169
+ dilation=dilation,
170
+ padding=padding,
171
+ )
172
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
173
+ self.in_layers.append(in_layer)
174
+
175
+ # last one is not necessary
176
+ if i < n_layers - 1:
177
+ res_skip_channels = 2 * hidden_channels
178
+ else:
179
+ res_skip_channels = hidden_channels
180
+
181
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
182
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
183
+ self.res_skip_layers.append(res_skip_layer)
184
+
185
+ def forward(self, x, x_mask, g=None, **kwargs):
186
+ output = torch.zeros_like(x)
187
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
188
+
189
+ if g is not None:
190
+ g = self.cond_layer(g)
191
+
192
+ for i in range(self.n_layers):
193
+ x_in = self.in_layers[i](x)
194
+ if g is not None:
195
+ cond_offset = i * 2 * self.hidden_channels
196
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
197
+ else:
198
+ g_l = torch.zeros_like(x_in)
199
+
200
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
201
+ acts = self.drop(acts)
202
+
203
+ res_skip_acts = self.res_skip_layers[i](acts)
204
+ if i < self.n_layers - 1:
205
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
206
+ x = (x + res_acts) * x_mask
207
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
208
+ else:
209
+ output = output + res_skip_acts
210
+ return output * x_mask
211
+
212
+ def remove_weight_norm(self):
213
+ if self.gin_channels != 0:
214
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
215
+ for l in self.in_layers:
216
+ torch.nn.utils.remove_weight_norm(l)
217
+ for l in self.res_skip_layers:
218
+ torch.nn.utils.remove_weight_norm(l)
219
+
220
+
221
+ class ResBlock1(torch.nn.Module):
222
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
223
+ super(ResBlock1, self).__init__()
224
+ self.convs1 = nn.ModuleList(
225
+ [
226
+ weight_norm(
227
+ Conv1d(
228
+ channels,
229
+ channels,
230
+ kernel_size,
231
+ 1,
232
+ dilation=dilation[0],
233
+ padding=get_padding(kernel_size, dilation[0]),
234
+ )
235
+ ),
236
+ weight_norm(
237
+ Conv1d(
238
+ channels,
239
+ channels,
240
+ kernel_size,
241
+ 1,
242
+ dilation=dilation[1],
243
+ padding=get_padding(kernel_size, dilation[1]),
244
+ )
245
+ ),
246
+ weight_norm(
247
+ Conv1d(
248
+ channels,
249
+ channels,
250
+ kernel_size,
251
+ 1,
252
+ dilation=dilation[2],
253
+ padding=get_padding(kernel_size, dilation[2]),
254
+ )
255
+ ),
256
+ ]
257
+ )
258
+ self.convs1.apply(init_weights)
259
+
260
+ self.convs2 = nn.ModuleList(
261
+ [
262
+ weight_norm(
263
+ Conv1d(
264
+ channels,
265
+ channels,
266
+ kernel_size,
267
+ 1,
268
+ dilation=1,
269
+ padding=get_padding(kernel_size, 1),
270
+ )
271
+ ),
272
+ weight_norm(
273
+ Conv1d(
274
+ channels,
275
+ channels,
276
+ kernel_size,
277
+ 1,
278
+ dilation=1,
279
+ padding=get_padding(kernel_size, 1),
280
+ )
281
+ ),
282
+ weight_norm(
283
+ Conv1d(
284
+ channels,
285
+ channels,
286
+ kernel_size,
287
+ 1,
288
+ dilation=1,
289
+ padding=get_padding(kernel_size, 1),
290
+ )
291
+ ),
292
+ ]
293
+ )
294
+ self.convs2.apply(init_weights)
295
+
296
+ def forward(self, x, x_mask=None):
297
+ for c1, c2 in zip(self.convs1, self.convs2):
298
+ xt = F.leaky_relu(x, LRELU_SLOPE)
299
+ if x_mask is not None:
300
+ xt = xt * x_mask
301
+ xt = c1(xt)
302
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
303
+ if x_mask is not None:
304
+ xt = xt * x_mask
305
+ xt = c2(xt)
306
+ x = xt + x
307
+ if x_mask is not None:
308
+ x = x * x_mask
309
+ return x
310
+
311
+ def remove_weight_norm(self):
312
+ for l in self.convs1:
313
+ remove_weight_norm(l)
314
+ for l in self.convs2:
315
+ remove_weight_norm(l)
316
+
317
+
318
+ class ResBlock2(torch.nn.Module):
319
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
320
+ super(ResBlock2, self).__init__()
321
+ self.convs = nn.ModuleList(
322
+ [
323
+ weight_norm(
324
+ Conv1d(
325
+ channels,
326
+ channels,
327
+ kernel_size,
328
+ 1,
329
+ dilation=dilation[0],
330
+ padding=get_padding(kernel_size, dilation[0]),
331
+ )
332
+ ),
333
+ weight_norm(
334
+ Conv1d(
335
+ channels,
336
+ channels,
337
+ kernel_size,
338
+ 1,
339
+ dilation=dilation[1],
340
+ padding=get_padding(kernel_size, dilation[1]),
341
+ )
342
+ ),
343
+ ]
344
+ )
345
+ self.convs.apply(init_weights)
346
+
347
+ def forward(self, x, x_mask=None):
348
+ for c in self.convs:
349
+ xt = F.leaky_relu(x, LRELU_SLOPE)
350
+ if x_mask is not None:
351
+ xt = xt * x_mask
352
+ xt = c(xt)
353
+ x = xt + x
354
+ if x_mask is not None:
355
+ x = x * x_mask
356
+ return x
357
+
358
+ def remove_weight_norm(self):
359
+ for l in self.convs:
360
+ remove_weight_norm(l)
361
+
362
+
363
+ class Log(nn.Module):
364
+ def forward(self, x, x_mask, reverse=False, **kwargs):
365
+ if not reverse:
366
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
367
+ logdet = torch.sum(-y, [1, 2])
368
+ return y, logdet
369
+ else:
370
+ x = torch.exp(x) * x_mask
371
+ return x
372
+
373
+
374
+ class Flip(nn.Module):
375
+ def forward(self, x, *args, reverse=False, **kwargs):
376
+ x = torch.flip(x, [1])
377
+ if not reverse:
378
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
379
+ return x, logdet
380
+ else:
381
+ return x
382
+
383
+
384
+ class ElementwiseAffine(nn.Module):
385
+ def __init__(self, channels):
386
+ super().__init__()
387
+ self.channels = channels
388
+ self.m = nn.Parameter(torch.zeros(channels, 1))
389
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
390
+
391
+ def forward(self, x, x_mask, reverse=False, **kwargs):
392
+ if not reverse:
393
+ y = self.m + torch.exp(self.logs) * x
394
+ y = y * x_mask
395
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
396
+ return y, logdet
397
+ else:
398
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
399
+ return x
400
+
401
+
402
+ class ResidualCouplingLayer(nn.Module):
403
+ def __init__(
404
+ self,
405
+ channels,
406
+ hidden_channels,
407
+ kernel_size,
408
+ dilation_rate,
409
+ n_layers,
410
+ p_dropout=0,
411
+ gin_channels=0,
412
+ mean_only=False,
413
+ ):
414
+ assert channels % 2 == 0, "channels should be divisible by 2"
415
+ super().__init__()
416
+ self.channels = channels
417
+ self.hidden_channels = hidden_channels
418
+ self.kernel_size = kernel_size
419
+ self.dilation_rate = dilation_rate
420
+ self.n_layers = n_layers
421
+ self.half_channels = channels // 2
422
+ self.mean_only = mean_only
423
+
424
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
425
+ self.enc = WN(
426
+ hidden_channels,
427
+ kernel_size,
428
+ dilation_rate,
429
+ n_layers,
430
+ p_dropout=p_dropout,
431
+ gin_channels=gin_channels,
432
+ )
433
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
434
+ self.post.weight.data.zero_()
435
+ self.post.bias.data.zero_()
436
+
437
+ def forward(self, x, x_mask, g=None, reverse=False):
438
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
439
+ h = self.pre(x0) * x_mask
440
+ h = self.enc(h, x_mask, g=g)
441
+ stats = self.post(h) * x_mask
442
+ if not self.mean_only:
443
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
444
+ else:
445
+ m = stats
446
+ logs = torch.zeros_like(m)
447
+
448
+ if not reverse:
449
+ x1 = m + x1 * torch.exp(logs) * x_mask
450
+ x = torch.cat([x0, x1], 1)
451
+ logdet = torch.sum(logs, [1, 2])
452
+ return x, logdet
453
+ else:
454
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
455
+ x = torch.cat([x0, x1], 1)
456
+ return x
457
+
458
+
459
+ class ConvFlow(nn.Module):
460
+ def __init__(
461
+ self,
462
+ in_channels,
463
+ filter_channels,
464
+ kernel_size,
465
+ n_layers,
466
+ num_bins=10,
467
+ tail_bound=5.0,
468
+ ):
469
+ super().__init__()
470
+ self.in_channels = in_channels
471
+ self.filter_channels = filter_channels
472
+ self.kernel_size = kernel_size
473
+ self.n_layers = n_layers
474
+ self.num_bins = num_bins
475
+ self.tail_bound = tail_bound
476
+ self.half_channels = in_channels // 2
477
+
478
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
479
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
480
+ self.proj = nn.Conv1d(
481
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
482
+ )
483
+ self.proj.weight.data.zero_()
484
+ self.proj.bias.data.zero_()
485
+
486
+ def forward(self, x, x_mask, g=None, reverse=False):
487
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
488
+ h = self.pre(x0)
489
+ h = self.convs(h, x_mask, g=g)
490
+ h = self.proj(h) * x_mask
491
+
492
+ b, c, t = x0.shape
493
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
494
+
495
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
496
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
497
+ self.filter_channels
498
+ )
499
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
500
+
501
+ x1, logabsdet = piecewise_rational_quadratic_transform(
502
+ x1,
503
+ unnormalized_widths,
504
+ unnormalized_heights,
505
+ unnormalized_derivatives,
506
+ inverse=reverse,
507
+ tails="linear",
508
+ tail_bound=self.tail_bound,
509
+ )
510
+
511
+ x = torch.cat([x0, x1], 1) * x_mask
512
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
513
+ if not reverse:
514
+ return x, logdet
515
+ else:
516
+ return x
517
+
518
+
519
+ class TransformerCouplingLayer(nn.Module):
520
+ def __init__(
521
+ self,
522
+ channels,
523
+ hidden_channels,
524
+ kernel_size,
525
+ n_layers,
526
+ n_heads,
527
+ p_dropout=0,
528
+ filter_channels=0,
529
+ mean_only=False,
530
+ wn_sharing_parameter=None,
531
+ gin_channels=0,
532
+ ):
533
+ assert channels % 2 == 0, "channels should be divisible by 2"
534
+ super().__init__()
535
+ self.channels = channels
536
+ self.hidden_channels = hidden_channels
537
+ self.kernel_size = kernel_size
538
+ self.n_layers = n_layers
539
+ self.half_channels = channels // 2
540
+ self.mean_only = mean_only
541
+
542
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
543
+ self.enc = (
544
+ Encoder(
545
+ hidden_channels,
546
+ filter_channels,
547
+ n_heads,
548
+ n_layers,
549
+ kernel_size,
550
+ p_dropout,
551
+ isflow=True,
552
+ gin_channels=gin_channels,
553
+ )
554
+ if wn_sharing_parameter is None
555
+ else wn_sharing_parameter
556
+ )
557
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
558
+ self.post.weight.data.zero_()
559
+ self.post.bias.data.zero_()
560
+
561
+ def forward(self, x, x_mask, g=None, reverse=False):
562
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
563
+ h = self.pre(x0) * x_mask
564
+ h = self.enc(h, x_mask, g=g)
565
+ stats = self.post(h) * x_mask
566
+ if not self.mean_only:
567
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
568
+ else:
569
+ m = stats
570
+ logs = torch.zeros_like(m)
571
+
572
+ if not reverse:
573
+ x1 = m + x1 * torch.exp(logs) * x_mask
574
+ x = torch.cat([x0, x1], 1)
575
+ logdet = torch.sum(logs, [1, 2])
576
+ return x, logdet
577
+ else:
578
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
579
+ x = torch.cat([x0, x1], 1)
580
+ return x
581
+
582
+ x1, logabsdet = piecewise_rational_quadratic_transform(
583
+ x1,
584
+ unnormalized_widths,
585
+ unnormalized_heights,
586
+ unnormalized_derivatives,
587
+ inverse=reverse,
588
+ tails="linear",
589
+ tail_bound=self.tail_bound,
590
+ )
591
+
592
+ x = torch.cat([x0, x1], 1) * x_mask
593
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
594
+ if not reverse:
595
+ return x, logdet
596
+ else:
597
+ return x
requirements.txt ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ amfm_decompy
2
+ av
3
+ cmudict
4
+ cn2an
5
+ fugashi
6
+ g2p_en
7
+ GPUtil
8
+ gradio
9
+ jaconv
10
+ jieba
11
+ librosa==0.9.1
12
+ loguru
13
+ matplotlib
14
+ mecab-python3
15
+ numpy
16
+ numba
17
+ num2words
18
+ opencc==1.1.6
19
+ phonemizer
20
+ psutil
21
+ pydub
22
+ pypinyin
23
+ PyYAML
24
+ pyopenjtalk; sys_platform == 'linux'
25
+ openjtalk; sys_platform != 'linux'
26
+ requests
27
+ sentencepiece
28
+ scipy
29
+ tensorboard
30
+ torch
31
+ torchvision
32
+ transformers
33
+ Unidecode
34
+ unidic-lite
35
+ vector_quantize_pytorch
server.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
+ from typing import Dict, List
3
+
4
+ import torch
5
+ from av import open as avopen
6
+ from flask import Flask, request, Response
7
+ from scipy.io import wavfile
8
+
9
+ import utils
10
+ from config import config
11
+ from infer import infer, get_net_g, latest_version
12
+
13
+ # Flask Init
14
+ app = Flask(__name__)
15
+ app.config["JSON_AS_ASCII"] = False
16
+
17
+
18
+ def replace_punctuation(text, i=2):
19
+ punctuation = ",。?!"
20
+ for char in punctuation:
21
+ text = text.replace(char, char * i)
22
+ return text
23
+
24
+
25
+ def wav2(i, o, format):
26
+ inp = avopen(i, "rb")
27
+ out = avopen(o, "wb", format=format)
28
+ if format == "ogg":
29
+ format = "libvorbis"
30
+
31
+ ostream = out.add_stream(format)
32
+
33
+ for frame in inp.decode(audio=0):
34
+ for p in ostream.encode(frame):
35
+ out.mux(p)
36
+
37
+ for p in ostream.encode(None):
38
+ out.mux(p)
39
+
40
+ out.close()
41
+ inp.close()
42
+
43
+
44
+ net_g_List = []
45
+ hps_List = []
46
+ # 模型角色字典
47
+ # 使用方法 chr_name = chrsMap[model_id][chr_id]
48
+ chrsMap: List[Dict[int, str]] = list()
49
+
50
+ # 加载模型
51
+ models = config.server_config.models
52
+ for model in models:
53
+ hps_List.append(utils.get_hparams_from_file(model["config"]))
54
+ # 添加角色字典
55
+ chrsMap.append(dict())
56
+ for name, cid in hps_List[-1].data.spk2id.items():
57
+ chrsMap[-1][cid] = name
58
+ version = (hps_List[-1].version if hasattr(hps_List[-1], "version") else latest_version)
59
+ net_g_List.append(get_net_g(model_path=model["model"], device=model["device"], hps=hps_List[-1], ))
60
+
61
+
62
+ @app.route("/")
63
+ def main():
64
+ try:
65
+ model = int(request.args.get("model"))
66
+ speaker = request.args.get("speaker", "") # 指定人物名
67
+ speaker_id = request.args.get("speaker_id", None) # 直接指定id
68
+ text = request.args.get("text").replace("/n", "")
69
+ sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
70
+ noise = float(request.args.get("noise", 0.5))
71
+ noisew = float(request.args.get("noisew", 0.6))
72
+ length = float(request.args.get("length", 1.2))
73
+ language = request.args.get("language")
74
+ if length >= 2:
75
+ return "Too big length"
76
+ if len(text) >= 250:
77
+ return "Too long text"
78
+ fmt = request.args.get("format", "wav")
79
+ if None in (speaker, text):
80
+ return "Missing Parameter"
81
+ if fmt not in ("mp3", "wav", "ogg"):
82
+ return "Invalid Format"
83
+ if language not in ("SH", "ZH"):
84
+ return "Invalid language"
85
+ except:
86
+ return "Invalid Parameter"
87
+
88
+ if speaker_id is not None:
89
+ if speaker_id.isdigit():
90
+ speaker = chrsMap[model][int(speaker_id)]
91
+
92
+ with torch.no_grad():
93
+ audio = infer(
94
+ text=text,
95
+ sdp_ratio=sdp_ratio,
96
+ noise_scale=noise,
97
+ noise_scale_w=noisew,
98
+ length_scale=length,
99
+ sid=speaker,
100
+ language=models[model]["language"],
101
+ hps=hps_List[model],
102
+ net_g=net_g_List[model],
103
+ device=models[model]["device"],
104
+ )
105
+
106
+ with BytesIO() as wav:
107
+ wavfile.write(wav, hps_List[model].data.sampling_rate, audio)
108
+ torch.cuda.empty_cache()
109
+ if fmt == "wav":
110
+ return Response(wav.getvalue(), mimetype="audio/wav")
111
+ wav.seek(0, 0)
112
+ with BytesIO() as ofp:
113
+ wav2(wav, ofp, fmt)
114
+ return Response(
115
+ ofp.getvalue(), mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
116
+ )
117
+
118
+
119
+ if __name__ == "__main__":
120
+ app.run(port=config.server_config.port)
server_fastapi.py ADDED
@@ -0,0 +1,499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ api服务 多版本多模型 fastapi实现
3
+ """
4
+ import gc
5
+ import logging
6
+ import os
7
+ import random
8
+ import webbrowser
9
+ from io import BytesIO
10
+ from typing import Dict, Optional, List
11
+
12
+ import GPUtil
13
+ import psutil
14
+ import torch
15
+ import uvicorn
16
+ from fastapi import FastAPI, Query
17
+ from fastapi.responses import Response, FileResponse
18
+ from fastapi.staticfiles import StaticFiles
19
+ from loguru import logger
20
+ from scipy.io import wavfile
21
+
22
+ import tools.translate as trans
23
+ import utils
24
+ from config import config
25
+ from infer import infer, get_net_g, latest_version
26
+
27
+
28
+ class Model:
29
+ """模型封装类"""
30
+
31
+ def __init__(self, config_path: str, model_path: str, device: str, language: str):
32
+ self.config_path: str = os.path.normpath(config_path)
33
+ self.model_path: str = os.path.normpath(model_path)
34
+ self.device: str = device
35
+ self.language: str = language
36
+ self.hps = utils.get_hparams_from_file(config_path)
37
+ self.spk2id: Dict[str, int] = self.hps.data.spk2id # spk - id 映射字典
38
+ self.id2spk: Dict[int, str] = dict() # id - spk 映射字典
39
+ for speaker, speaker_id in self.hps.data.spk2id.items():
40
+ self.id2spk[speaker_id] = speaker
41
+ self.version: str = (
42
+ self.hps.version if hasattr(self.hps, "version") else latest_version
43
+ )
44
+ self.net_g = get_net_g(model_path=model_path, device=device, hps=self.hps)
45
+
46
+ def to_dict(self) -> Dict[str, any]:
47
+ return {
48
+ "config_path": self.config_path,
49
+ "model_path": self.model_path,
50
+ "device": self.device,
51
+ "language": self.language,
52
+ "spk2id": self.spk2id,
53
+ "id2spk": self.id2spk,
54
+ "version": self.version,
55
+ }
56
+
57
+
58
+ class Models:
59
+ def __init__(self):
60
+ self.models: Dict[int, Model] = dict()
61
+ self.num = 0
62
+ # spkInfo[角色名][模型id] = 角色id
63
+ self.spk_info: Dict[str, Dict[int, int]] = dict()
64
+ self.paths: Dict[str, int] = dict() # 路径, 引用数
65
+
66
+ def add_model(self, model: Model):
67
+ """添加一个模型"""
68
+ self.models[self.num] = model
69
+ # 添加角色信息
70
+ for speaker, speaker_id in model.spk2id.items():
71
+ if speaker not in self.spk_info.keys():
72
+ self.spk_info[speaker] = {self.num: speaker_id}
73
+ else:
74
+ self.spk_info[speaker][self.num] = speaker_id
75
+ # 添加路径信息
76
+ model_path = os.path.realpath(model.model_path)
77
+ if model_path not in self.paths.keys():
78
+ self.paths[model_path] = 1
79
+ else:
80
+ self.paths[model_path] += 1
81
+ # 修改计数
82
+ self.num += 1
83
+
84
+ def init_model(
85
+ self, config_path: str, model_path: str, device: str, language: str
86
+ ) -> int:
87
+ """
88
+ 初始化并添加一个模型
89
+
90
+ :param config_path: 模型config.json路径
91
+ :param model_path: 模型路径
92
+ :param device: 模型推理使用设备
93
+ :param language: 模型推理默认语言
94
+ """
95
+ self.models[self.num] = Model(
96
+ config_path=config_path,
97
+ model_path=model_path,
98
+ device=device,
99
+ language=language,
100
+ )
101
+ # 添加角色信息
102
+ for speaker, speaker_id in self.models[self.num].spk2id.items():
103
+ if speaker not in self.spk_info.keys():
104
+ self.spk_info[speaker] = {self.num: speaker_id}
105
+ else:
106
+ self.spk_info[speaker][self.num] = speaker_id
107
+ # 添加路径信息
108
+ model_path = os.path.realpath(self.models[self.num].model_path)
109
+ if model_path not in self.paths.keys():
110
+ self.paths[model_path] = 1
111
+ else:
112
+ self.paths[model_path] += 1
113
+ # 修改计数
114
+ logger.success(f"添加模型{model_path},使用配置文件{os.path.realpath(config_path)}")
115
+ self.num += 1
116
+ return self.num - 1
117
+
118
+ def del_model(self, index: int) -> Optional[int]:
119
+ """删除对应序号的模型,若不存在则返回None"""
120
+ if index not in self.models.keys():
121
+ return None
122
+ # 删除角色信息
123
+ for speaker, speaker_id in self.models[index].spk2id.items():
124
+ self.spk_info[speaker].pop(index)
125
+ if len(self.spk_info[speaker]) == 0:
126
+ # 若对应角色的所有模型都被删除,则清除该角色信息
127
+ self.spk_info.pop(speaker)
128
+ # 删除路径信息
129
+ model_path = os.path.realpath(self.models[index].model_path)
130
+ self.paths[model_path] -= 1
131
+ assert self.paths[model_path] >= 0
132
+ if self.paths[model_path] == 0:
133
+ # 引用数为零时予以清空
134
+ self.paths.pop(model_path)
135
+ # 删除模型
136
+ logger.success(f"卸载模型{model_path}, id = {index}")
137
+ self.models.pop(index)
138
+ gc.collect()
139
+ if torch.cuda.is_available():
140
+ torch.cuda.empty_cache()
141
+ return index
142
+
143
+ def get_models(self):
144
+ """获取所有模型"""
145
+ return self.models
146
+
147
+
148
+ if __name__ == "__main__":
149
+ app = FastAPI()
150
+ app.logger = logger
151
+ # 挂载静态文件
152
+ StaticDir: str = "./Web"
153
+ dirs = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
154
+ files = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
155
+ for dirName in dirs:
156
+ app.mount(
157
+ f"/{dirName}",
158
+ StaticFiles(directory=f"./{StaticDir}/{dirName}"),
159
+ name=dirName,
160
+ )
161
+ loaded_models = Models()
162
+ # 加载模型
163
+ models_info = config.server_config.models
164
+ for model_info in models_info:
165
+ loaded_models.init_model(
166
+ config_path=model_info["config"],
167
+ model_path=model_info["model"],
168
+ device=model_info["device"],
169
+ language=model_info["language"],
170
+ )
171
+
172
+
173
+ @app.get("/")
174
+ async def index():
175
+ return FileResponse("./Web/index.html")
176
+
177
+
178
+ @app.get("/voice")
179
+ def voice(
180
+ text: str = Query(..., description="输入文字"),
181
+ model_id: int = Query(..., description="模型ID"), # 模型序号
182
+ speaker_name: str = Query(
183
+ None, description="说话人名"
184
+ ), # speaker_name与 speaker_id二者选其一
185
+ speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"),
186
+ sdp_ratio: float = Query(0.2, description="SDP/DP混合比"),
187
+ noise: float = Query(0.2, description="感情"),
188
+ noisew: float = Query(0.9, description="音素长度"),
189
+ length: float = Query(1, description="语速"),
190
+ language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值
191
+ auto_translate: bool = Query(False, description="自动翻译"),
192
+ ):
193
+ """语音接口"""
194
+
195
+ # 检查模型是否存在
196
+ if model_id not in loaded_models.models.keys():
197
+ return {"status": 10, "detail": f"模型model_id={model_id}未加载"}
198
+ # 检查是否提供speaker
199
+ if speaker_name is None and speaker_id is None:
200
+ return {"status": 11, "detail": "请提供speaker_name或speaker_id"}
201
+ elif speaker_name is None:
202
+ # 检查speaker_id是否存在
203
+ if speaker_id not in loaded_models.models[model_id].id2spk.keys():
204
+ return {"status": 12, "detail": f"角色speaker_id={speaker_id}不存在"}
205
+ speaker_name = loaded_models.models[model_id].id2spk[speaker_id]
206
+ # 检查speaker_name是否存在
207
+ if speaker_name not in loaded_models.models[model_id].spk2id.keys():
208
+ return {"status": 13, "detail": f"角色speaker_name={speaker_name}不存在"}
209
+ if language is None:
210
+ language = loaded_models.models[model_id].language
211
+ if auto_translate:
212
+ text = trans.translate(Sentence=text, to_Language=language.lower())
213
+ with torch.no_grad():
214
+ audio = infer(
215
+ text=text,
216
+ sdp_ratio=sdp_ratio,
217
+ noise_scale=noise,
218
+ noise_scale_w=noisew,
219
+ length_scale=length,
220
+ sid=speaker_name,
221
+ language=language,
222
+ hps=loaded_models.models[model_id].hps,
223
+ net_g=loaded_models.models[model_id].net_g,
224
+ device=loaded_models.models[model_id].device,
225
+ )
226
+ wavContent = BytesIO()
227
+ wavfile.write(
228
+ wavContent, loaded_models.models[model_id].hps.data.sampling_rate, audio
229
+ )
230
+ response = Response(content=wavContent.getvalue(), media_type="audio/wav")
231
+ return response
232
+
233
+
234
+ @app.get("/models/info")
235
+ def get_loaded_models_info():
236
+ """获取已加载模型信息"""
237
+
238
+ result: Dict[str, Dict] = dict()
239
+ for key, model in loaded_models.models.items():
240
+ result[str(key)] = model.to_dict()
241
+ return result
242
+
243
+
244
+ @app.get("/models/delete")
245
+ def delete_model(model_id: int = Query(..., description="删除模型id")):
246
+ """删除指定模型"""
247
+
248
+ result = loaded_models.del_model(model_id)
249
+ if result is None:
250
+ return {"status": 14, "detail": f"模型{model_id}不存在,删除失败"}
251
+ return {"status": 0, "detail": "删除成功"}
252
+
253
+
254
+ @app.get("/models/add")
255
+ def add_model(
256
+ model_path: str = Query(..., description="添加模型路径"),
257
+ config_path: str = Query(
258
+ None, description="添加模型配置文件路径,不填则使用./config.json或../config.json"
259
+ ),
260
+ device: str = Query("cuda", description="推理使用设备"),
261
+ language: str = Query("ZH", description="模型默认语言"),
262
+ ):
263
+ """添加指定模型:允许重复添加相同路径模型,注意,当前实现中模型会重复加载,加载两次占用两份内存"""
264
+ if config_path is None:
265
+ model_dir = os.path.dirname(model_path)
266
+ if os.path.isfile(os.path.join(model_dir, "config.json")):
267
+ config_path = os.path.join(model_dir, "config.json")
268
+ elif os.path.isfile(os.path.join(model_dir, "../config.json")):
269
+ config_path = os.path.join(model_dir, "../config.json")
270
+ else:
271
+ return {
272
+ "status": 15,
273
+ "detail": "查询未传入配置文件路径,同时默认路径./与../中不存在配置文件config.json。",
274
+ }
275
+ try:
276
+ model_id = loaded_models.init_model(
277
+ config_path=config_path,
278
+ model_path=model_path,
279
+ device=device,
280
+ language=language,
281
+ )
282
+ except Exception:
283
+ logging.exception("模型加载出错")
284
+ return {
285
+ "status": 16,
286
+ "detail": "模型加载出错,详细查看日志",
287
+ }
288
+ return {
289
+ "status": 0,
290
+ "detail": "模型添加成功",
291
+ "Data": {
292
+ "model_id": model_id,
293
+ "model_info": loaded_models.models[model_id].to_dict(),
294
+ },
295
+ }
296
+
297
+
298
+ def _get_all_models(root_dir: str = "Data", only_unloaded: bool = False):
299
+ result: Dict[str, List[str]] = dict()
300
+ files = os.listdir(root_dir) + ["."]
301
+ for file in files:
302
+ if os.path.isdir(os.path.join(root_dir, file)):
303
+ sub_dir = os.path.join(root_dir, file)
304
+ # 搜索 "sub_dir" 、 "sub_dir/models" 两个路径
305
+ result[file] = list()
306
+ sub_files = os.listdir(sub_dir)
307
+ model_files = []
308
+ for sub_file in sub_files:
309
+ relpath = os.path.realpath(os.path.join(sub_dir, sub_file))
310
+ if only_unloaded and relpath in loaded_models.paths.keys():
311
+ continue
312
+ if sub_file.endswith(".pth") and sub_file.startswith("G_"):
313
+ if os.path.isfile(relpath):
314
+ model_files.append(sub_file)
315
+ model_files = sorted(
316
+ model_files,
317
+ key=lambda pth: int(pth.lstrip("G_").rstrip(".pth"))
318
+ if pth.lstrip("G_").rstrip(".pth").isdigit()
319
+ else 10 ** 10,
320
+ )
321
+ result[file] = model_files
322
+ models_dir = os.path.join(sub_dir, "models")
323
+ model_files = []
324
+ if os.path.isdir(models_dir):
325
+ sub_files = os.listdir(models_dir)
326
+ for sub_file in sub_files:
327
+ relpath = os.path.realpath(os.path.join(models_dir, sub_file))
328
+ if only_unloaded and relpath in loaded_models.paths.keys():
329
+ continue
330
+ if sub_file.endswith(".pth") and sub_file.startswith("G_"):
331
+ if os.path.isfile(os.path.join(models_dir, sub_file)):
332
+ model_files.append(f"models/{sub_file}")
333
+ model_files = sorted(
334
+ model_files,
335
+ key=lambda pth: int(pth.lstrip("models/G_").rstrip(".pth"))
336
+ if pth.lstrip("models/G_").rstrip(".pth").isdigit()
337
+ else 10 ** 10,
338
+ )
339
+ result[file] += model_files
340
+ if len(result[file]) == 0:
341
+ result.pop(file)
342
+
343
+ return result
344
+
345
+
346
+ @app.get("/models/get_unloaded")
347
+ def get_unloaded_models_info(root_dir: str = Query("Data", description="搜索根目录")):
348
+ """获取未加载模型"""
349
+ return _get_all_models(root_dir, only_unloaded=True)
350
+
351
+
352
+ @app.get("/models/get_local")
353
+ def get_local_models_info(root_dir: str = Query("Data", description="搜索根目录")):
354
+ """获取全部本地模型"""
355
+ return _get_all_models(root_dir, only_unloaded=False)
356
+
357
+
358
+ @app.get("/status")
359
+ def get_status():
360
+ """获取电脑运行状态"""
361
+ cpu_percent = psutil.cpu_percent(interval=1)
362
+ memory_info = psutil.virtual_memory()
363
+ memory_total = memory_info.total
364
+ memory_available = memory_info.available
365
+ memory_used = memory_info.used
366
+ memory_percent = memory_info.percent
367
+ gpuInfo = []
368
+ devices = ["cpu"]
369
+ for i in range(torch.cuda.device_count()):
370
+ devices.append(f"cuda:{i}")
371
+ gpus = GPUtil.getGPUs()
372
+ for gpu in gpus:
373
+ gpuInfo.append(
374
+ {
375
+ "gpu_id": gpu.id,
376
+ "gpu_load": gpu.load,
377
+ "gpu_memory": {
378
+ "total": gpu.memoryTotal,
379
+ "used": gpu.memoryUsed,
380
+ "free": gpu.memoryFree,
381
+ },
382
+ }
383
+ )
384
+ return {
385
+ "devices": devices,
386
+ "cpu_percent": cpu_percent,
387
+ "memory_total": memory_total,
388
+ "memory_available": memory_available,
389
+ "memory_used": memory_used,
390
+ "memory_percent": memory_percent,
391
+ "gpu": gpuInfo,
392
+ }
393
+
394
+
395
+ @app.get("/tools/translate")
396
+ def translate(
397
+ texts: str = Query(..., description="待翻译文本"),
398
+ to_language: str = Query(..., description="翻译目标语言"),
399
+ ):
400
+ """翻译"""
401
+ return {"texts": trans.translate(Sentence=texts, to_Language=to_language)}
402
+
403
+
404
+ all_examples: Dict[str, Dict[str, List]] = dict() # 存放示例
405
+
406
+
407
+ @app.get("/tools/random_example")
408
+ def random_example(
409
+ language: str = Query(None, description="指定语言,未指定则随机返回"),
410
+ root_dir: str = Query("Data", description="搜索根目录"),
411
+ ):
412
+ """
413
+ 获取一个随机音频+文本,用于对比,音频会从本地目录随机选择。
414
+ """
415
+ global all_examples
416
+ # 数据初始化
417
+ if root_dir not in all_examples.keys():
418
+ all_examples[root_dir] = {"ZH": [], "SH": [], "EN": []}
419
+
420
+ examples = all_examples[root_dir]
421
+
422
+ # 从项目Data目录中搜索train/val.list
423
+ for root, directories, _files in os.walk("Data"):
424
+ for file in _files:
425
+ if file in ["train.list", "val.list"]:
426
+ print(file)
427
+ with open(
428
+ os.path.join(root, file), mode="r", encoding="utf-8"
429
+ ) as f:
430
+ lines = f.readlines()
431
+ for line in lines:
432
+ data = line.split("|")
433
+ if len(data) != 7:
434
+ continue
435
+ # 音频存在 且语言为ZH/EN/JP
436
+ if os.path.isfile(data[0]) and data[2] in [
437
+ "ZH",
438
+ "SH",
439
+ "EN",
440
+ ]:
441
+ examples[data[2]].append(
442
+ {
443
+ "text": data[3],
444
+ "audio": data[0],
445
+ "speaker": data[1],
446
+ }
447
+ )
448
+
449
+ examples = all_examples[root_dir]
450
+ if language is None:
451
+ if len(examples["ZH"]) + len(examples["SH"]) + len(examples["EN"]) == 0:
452
+ return {"status": 17, "detail": "没有加载任何示例数据"}
453
+ else:
454
+ # 随机选一个
455
+ rand_num = random.randint(
456
+ 0,
457
+ len(examples["ZH"]) + len(examples["SH"]) + len(examples["EN"]) - 1,
458
+ )
459
+ # ZH
460
+ if rand_num < len(examples["ZH"]):
461
+ return {"status": 0, "Data": examples["ZH"][rand_num]}
462
+ # JP
463
+ if rand_num < len(examples["ZH"]) + len(examples["SH"]):
464
+ return {
465
+ "status": 0,
466
+ "Data": examples["SH"][rand_num - len(examples["ZH"])],
467
+ }
468
+ # EN
469
+ return {
470
+ "status": 0,
471
+ "Data": examples["EN"][
472
+ rand_num - len(examples["ZH"]) - len(examples["SH"])
473
+ ],
474
+ }
475
+
476
+ else:
477
+ if len(examples[language]) == 0:
478
+ return {"status": 17, "detail": f"没有加载任何{language}数据"}
479
+ return {
480
+ "status": 0,
481
+ "Data": examples[language][
482
+ random.randint(0, len(examples[language]) - 1)
483
+ ],
484
+ }
485
+
486
+
487
+ @app.get("/tools/get_audio")
488
+ def get_audio(path: str = Query(..., description="本地音频路径")):
489
+ if not os.path.isfile(path):
490
+ return {"status": 18, "detail": "指定音频不存在"}
491
+ if not path.endswith(".wav"):
492
+ return {"status": 19, "detail": "非wav格式文件"}
493
+ return FileResponse(path=path)
494
+
495
+
496
+ logger.warning("本地服务,请勿将服务端口暴露于外网")
497
+ print(f"api文档地址 http://127.0.0.1:{config.server_config.port}/docs")
498
+ webbrowser.open(f"http://127.0.0.1:{config.server_config.port}")
499
+ uvicorn.run(app, port=config.server_config.port, host="0.0.0.0")
transforms.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(
13
+ inputs,
14
+ unnormalized_widths,
15
+ unnormalized_heights,
16
+ unnormalized_derivatives,
17
+ inverse=False,
18
+ tails=None,
19
+ tail_bound=1.0,
20
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
21
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
22
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
23
+ ):
24
+ if tails is None:
25
+ spline_fn = rational_quadratic_spline
26
+ spline_kwargs = {}
27
+ else:
28
+ spline_fn = unconstrained_rational_quadratic_spline
29
+ spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
30
+
31
+ outputs, logabsdet = spline_fn(
32
+ inputs=inputs,
33
+ unnormalized_widths=unnormalized_widths,
34
+ unnormalized_heights=unnormalized_heights,
35
+ unnormalized_derivatives=unnormalized_derivatives,
36
+ inverse=inverse,
37
+ min_bin_width=min_bin_width,
38
+ min_bin_height=min_bin_height,
39
+ min_derivative=min_derivative,
40
+ **spline_kwargs
41
+ )
42
+ return outputs, logabsdet
43
+
44
+
45
+ def searchsorted(bin_locations, inputs, eps=1e-6):
46
+ bin_locations[..., -1] += eps
47
+ return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
48
+
49
+
50
+ def unconstrained_rational_quadratic_spline(
51
+ inputs,
52
+ unnormalized_widths,
53
+ unnormalized_heights,
54
+ unnormalized_derivatives,
55
+ inverse=False,
56
+ tails="linear",
57
+ tail_bound=1.0,
58
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
59
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
60
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
61
+ ):
62
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
63
+ outside_interval_mask = ~inside_interval_mask
64
+
65
+ outputs = torch.zeros_like(inputs)
66
+ logabsdet = torch.zeros_like(inputs)
67
+
68
+ if tails == "linear":
69
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
70
+ constant = np.log(np.exp(1 - min_derivative) - 1)
71
+ unnormalized_derivatives[..., 0] = constant
72
+ unnormalized_derivatives[..., -1] = constant
73
+
74
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
75
+ logabsdet[outside_interval_mask] = 0
76
+ else:
77
+ raise RuntimeError("{} tails are not implemented.".format(tails))
78
+
79
+ (
80
+ outputs[inside_interval_mask],
81
+ logabsdet[inside_interval_mask],
82
+ ) = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound,
89
+ right=tail_bound,
90
+ bottom=-tail_bound,
91
+ top=tail_bound,
92
+ min_bin_width=min_bin_width,
93
+ min_bin_height=min_bin_height,
94
+ min_derivative=min_derivative,
95
+ )
96
+
97
+ return outputs, logabsdet
98
+
99
+
100
+ def rational_quadratic_spline(
101
+ inputs,
102
+ unnormalized_widths,
103
+ unnormalized_heights,
104
+ unnormalized_derivatives,
105
+ inverse=False,
106
+ left=0.0,
107
+ right=1.0,
108
+ bottom=0.0,
109
+ top=1.0,
110
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
111
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
112
+ min_derivative=DEFAULT_MIN_DERIVATIVE,
113
+ ):
114
+ if torch.min(inputs) < left or torch.max(inputs) > right:
115
+ raise ValueError("Input to a transform is not within its domain")
116
+
117
+ num_bins = unnormalized_widths.shape[-1]
118
+
119
+ if min_bin_width * num_bins > 1.0:
120
+ raise ValueError("Minimal bin width too large for the number of bins")
121
+ if min_bin_height * num_bins > 1.0:
122
+ raise ValueError("Minimal bin height too large for the number of bins")
123
+
124
+ widths = F.softmax(unnormalized_widths, dim=-1)
125
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
126
+ cumwidths = torch.cumsum(widths, dim=-1)
127
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
128
+ cumwidths = (right - left) * cumwidths + left
129
+ cumwidths[..., 0] = left
130
+ cumwidths[..., -1] = right
131
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
132
+
133
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
134
+
135
+ heights = F.softmax(unnormalized_heights, dim=-1)
136
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
137
+ cumheights = torch.cumsum(heights, dim=-1)
138
+ cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
139
+ cumheights = (top - bottom) * cumheights + bottom
140
+ cumheights[..., 0] = bottom
141
+ cumheights[..., -1] = top
142
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
143
+
144
+ if inverse:
145
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
146
+ else:
147
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
148
+
149
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
150
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
151
+
152
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
153
+ delta = heights / widths
154
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
155
+
156
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
157
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
158
+
159
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
160
+
161
+ if inverse:
162
+ a = (inputs - input_cumheights) * (
163
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
164
+ ) + input_heights * (input_delta - input_derivatives)
165
+ b = input_heights * input_derivatives - (inputs - input_cumheights) * (
166
+ input_derivatives + input_derivatives_plus_one - 2 * input_delta
167
+ )
168
+ c = -input_delta * (inputs - input_cumheights)
169
+
170
+ discriminant = b.pow(2) - 4 * a * c
171
+ assert (discriminant >= 0).all()
172
+
173
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
174
+ outputs = root * input_bin_widths + input_cumwidths
175
+
176
+ theta_one_minus_theta = root * (1 - root)
177
+ denominator = input_delta + (
178
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
179
+ * theta_one_minus_theta
180
+ )
181
+ derivative_numerator = input_delta.pow(2) * (
182
+ input_derivatives_plus_one * root.pow(2)
183
+ + 2 * input_delta * theta_one_minus_theta
184
+ + input_derivatives * (1 - root).pow(2)
185
+ )
186
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
187
+
188
+ return outputs, -logabsdet
189
+ else:
190
+ theta = (inputs - input_cumwidths) / input_bin_widths
191
+ theta_one_minus_theta = theta * (1 - theta)
192
+
193
+ numerator = input_heights * (
194
+ input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
195
+ )
196
+ denominator = input_delta + (
197
+ (input_derivatives + input_derivatives_plus_one - 2 * input_delta)
198
+ * theta_one_minus_theta
199
+ )
200
+ outputs = input_cumheights + numerator / denominator
201
+
202
+ derivative_numerator = input_delta.pow(2) * (
203
+ input_derivatives_plus_one * theta.pow(2)
204
+ + 2 * input_delta * theta_one_minus_theta
205
+ + input_derivatives * (1 - theta).pow(2)
206
+ )
207
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
208
+
209
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import argparse
4
+ import logging
5
+ import json
6
+ import subprocess
7
+ import numpy as np
8
+ from scipy.io.wavfile import read
9
+ import torch
10
+
11
+ MATPLOTLIB_FLAG = False
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
17
+ assert os.path.isfile(checkpoint_path)
18
+ checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
19
+ iteration = checkpoint_dict["iteration"]
20
+ learning_rate = checkpoint_dict["learning_rate"]
21
+ if (
22
+ optimizer is not None
23
+ and not skip_optimizer
24
+ and checkpoint_dict["optimizer"] is not None
25
+ ):
26
+ optimizer.load_state_dict(checkpoint_dict["optimizer"])
27
+ elif optimizer is None and not skip_optimizer:
28
+ # else: Disable this line if Infer and resume checkpoint,then enable the line upper
29
+ new_opt_dict = optimizer.state_dict()
30
+ new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
31
+ new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
32
+ new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
33
+ optimizer.load_state_dict(new_opt_dict)
34
+
35
+ saved_state_dict = checkpoint_dict["model"]
36
+ if hasattr(model, "module"):
37
+ state_dict = model.module.state_dict()
38
+ else:
39
+ state_dict = model.state_dict()
40
+
41
+ new_state_dict = {}
42
+ for k, v in state_dict.items():
43
+ try:
44
+ # assert "emb_g" not in k
45
+ new_state_dict[k] = saved_state_dict[k]
46
+ assert saved_state_dict[k].shape == v.shape, (
47
+ saved_state_dict[k].shape,
48
+ v.shape,
49
+ )
50
+ except:
51
+ # For upgrading from the old version
52
+ if "ja_bert_proj" in k:
53
+ v = torch.zeros_like(v)
54
+ logger.warn(
55
+ f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
56
+ )
57
+ else:
58
+ logger.error(f"{k} is not in the checkpoint")
59
+
60
+ new_state_dict[k] = v
61
+
62
+ if hasattr(model, "module"):
63
+ model.module.load_state_dict(new_state_dict, strict=False)
64
+ else:
65
+ model.load_state_dict(new_state_dict, strict=False)
66
+
67
+ logger.info(
68
+ "Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
69
+ )
70
+
71
+ return model, optimizer, learning_rate, iteration
72
+
73
+
74
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
75
+ logger.info(
76
+ "Saving model and optimizer state at iteration {} to {}".format(
77
+ iteration, checkpoint_path
78
+ )
79
+ )
80
+ if hasattr(model, "module"):
81
+ state_dict = model.module.state_dict()
82
+ else:
83
+ state_dict = model.state_dict()
84
+ torch.save(
85
+ {
86
+ "model": state_dict,
87
+ "iteration": iteration,
88
+ "optimizer": optimizer.state_dict(),
89
+ "learning_rate": learning_rate,
90
+ },
91
+ checkpoint_path,
92
+ )
93
+
94
+
95
+ def summarize(
96
+ writer,
97
+ global_step,
98
+ scalars={},
99
+ histograms={},
100
+ images={},
101
+ audios={},
102
+ audio_sampling_rate=22050,
103
+ ):
104
+ for k, v in scalars.items():
105
+ writer.add_scalar(k, v, global_step)
106
+ for k, v in histograms.items():
107
+ writer.add_histogram(k, v, global_step)
108
+ for k, v in images.items():
109
+ writer.add_image(k, v, global_step, dataformats="HWC")
110
+ for k, v in audios.items():
111
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
112
+
113
+
114
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
115
+ f_list = glob.glob(os.path.join(dir_path, regex))
116
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
117
+ x = f_list[-1]
118
+ return x
119
+
120
+
121
+ def plot_spectrogram_to_numpy(spectrogram):
122
+ global MATPLOTLIB_FLAG
123
+ if not MATPLOTLIB_FLAG:
124
+ import matplotlib
125
+
126
+ matplotlib.use("Agg")
127
+ MATPLOTLIB_FLAG = True
128
+ mpl_logger = logging.getLogger("matplotlib")
129
+ mpl_logger.setLevel(logging.WARNING)
130
+ import matplotlib.pylab as plt
131
+ import numpy as np
132
+
133
+ fig, ax = plt.subplots(figsize=(10, 2))
134
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
135
+ plt.colorbar(im, ax=ax)
136
+ plt.xlabel("Frames")
137
+ plt.ylabel("Channels")
138
+ plt.tight_layout()
139
+
140
+ fig.canvas.draw()
141
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
142
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
143
+ plt.close()
144
+ return data
145
+
146
+
147
+ def plot_alignment_to_numpy(alignment, info=None):
148
+ global MATPLOTLIB_FLAG
149
+ if not MATPLOTLIB_FLAG:
150
+ import matplotlib
151
+
152
+ matplotlib.use("Agg")
153
+ MATPLOTLIB_FLAG = True
154
+ mpl_logger = logging.getLogger("matplotlib")
155
+ mpl_logger.setLevel(logging.WARNING)
156
+ import matplotlib.pylab as plt
157
+ import numpy as np
158
+
159
+ fig, ax = plt.subplots(figsize=(6, 4))
160
+ im = ax.imshow(
161
+ alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
162
+ )
163
+ fig.colorbar(im, ax=ax)
164
+ xlabel = "Decoder timestep"
165
+ if info is not None:
166
+ xlabel += "\n\n" + info
167
+ plt.xlabel(xlabel)
168
+ plt.ylabel("Encoder timestep")
169
+ plt.tight_layout()
170
+
171
+ fig.canvas.draw()
172
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
173
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
174
+ plt.close()
175
+ return data
176
+
177
+
178
+ def load_wav_to_torch(full_path):
179
+ sampling_rate, data = read(full_path)
180
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
181
+
182
+
183
+ def load_filepaths_and_text(filename, split="|"):
184
+ with open(filename, encoding="utf-8") as f:
185
+ filepaths_and_text = [line.strip().split(split) for line in f]
186
+ return filepaths_and_text
187
+
188
+
189
+ def get_hparams(init=True):
190
+ parser = argparse.ArgumentParser()
191
+ parser.add_argument(
192
+ "-c",
193
+ "--config",
194
+ type=str,
195
+ default="./configs/base.json",
196
+ help="JSON file for configuration",
197
+ )
198
+ parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
199
+
200
+ args = parser.parse_args()
201
+ model_dir = os.path.join("./logs", args.model)
202
+
203
+ if not os.path.exists(model_dir):
204
+ os.makedirs(model_dir)
205
+
206
+ config_path = args.config
207
+ config_save_path = os.path.join(model_dir, "config.json")
208
+ if init:
209
+ with open(config_path, "r", encoding="utf-8") as f:
210
+ data = f.read()
211
+ with open(config_save_path, "w", encoding="utf-8") as f:
212
+ f.write(data)
213
+ else:
214
+ with open(config_save_path, "r", vencoding="utf-8") as f:
215
+ data = f.read()
216
+ config = json.loads(data)
217
+ hparams = HParams(**config)
218
+ hparams.model_dir = model_dir
219
+ return hparams
220
+
221
+
222
+ def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
223
+ """Freeing up space by deleting saved ckpts
224
+
225
+ Arguments:
226
+ path_to_models -- Path to the model directory
227
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
228
+ sort_by_time -- True -> chronologically delete ckpts
229
+ False -> lexicographically delete ckpts
230
+ """
231
+ import re
232
+
233
+ ckpts_files = [
234
+ f
235
+ for f in os.listdir(path_to_models)
236
+ if os.path.isfile(os.path.join(path_to_models, f))
237
+ ]
238
+
239
+ def name_key(_f):
240
+ return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
241
+
242
+ def time_key(_f):
243
+ return os.path.getmtime(os.path.join(path_to_models, _f))
244
+
245
+ sort_key = time_key if sort_by_time else name_key
246
+
247
+ def x_sorted(_x):
248
+ return sorted(
249
+ [f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
250
+ key=sort_key,
251
+ )
252
+
253
+ to_del = [
254
+ os.path.join(path_to_models, fn)
255
+ for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
256
+ ]
257
+
258
+ def del_info(fn):
259
+ return logger.info(f".. Free up space by deleting ckpt {fn}")
260
+
261
+ def del_routine(x):
262
+ return [os.remove(x), del_info(x)]
263
+
264
+ [del_routine(fn) for fn in to_del]
265
+
266
+
267
+ def get_hparams_from_dir(model_dir):
268
+ config_save_path = os.path.join(model_dir, "config.json")
269
+ with open(config_save_path, "r", encoding="utf-8") as f:
270
+ data = f.read()
271
+ config = json.loads(data)
272
+
273
+ hparams = HParams(**config)
274
+ hparams.model_dir = model_dir
275
+ return hparams
276
+
277
+
278
+ def get_hparams_from_file(config_path):
279
+ # print("config_path: ", config_path)
280
+ with open(config_path, "r", encoding="utf-8") as f:
281
+ data = f.read()
282
+ config = json.loads(data)
283
+
284
+ hparams = HParams(**config)
285
+ return hparams
286
+
287
+
288
+ def check_git_hash(model_dir):
289
+ source_dir = os.path.dirname(os.path.realpath(__file__))
290
+ if not os.path.exists(os.path.join(source_dir, ".git")):
291
+ logger.warn(
292
+ "{} is not a git repository, therefore hash value comparison will be ignored.".format(
293
+ source_dir
294
+ )
295
+ )
296
+ return
297
+
298
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
299
+
300
+ path = os.path.join(model_dir, "githash")
301
+ if os.path.exists(path):
302
+ saved_hash = open(path).read()
303
+ if saved_hash != cur_hash:
304
+ logger.warn(
305
+ "git hash values are different. {}(saved) != {}(current)".format(
306
+ saved_hash[:8], cur_hash[:8]
307
+ )
308
+ )
309
+ else:
310
+ open(path, "w").write(cur_hash)
311
+
312
+
313
+ def get_logger(model_dir, filename="train.log"):
314
+ global logger
315
+ logger = logging.getLogger(os.path.basename(model_dir))
316
+ logger.setLevel(logging.DEBUG)
317
+
318
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
319
+ if not os.path.exists(model_dir):
320
+ os.makedirs(model_dir)
321
+ h = logging.FileHandler(os.path.join(model_dir, filename))
322
+ h.setLevel(logging.DEBUG)
323
+ h.setFormatter(formatter)
324
+ logger.addHandler(h)
325
+ return logger
326
+
327
+
328
+ class HParams:
329
+ def __init__(self, **kwargs):
330
+ for k, v in kwargs.items():
331
+ if type(v) == dict:
332
+ v = HParams(**v)
333
+ self[k] = v
334
+
335
+ def keys(self):
336
+ return self.__dict__.keys()
337
+
338
+ def items(self):
339
+ return self.__dict__.items()
340
+
341
+ def values(self):
342
+ return self.__dict__.values()
343
+
344
+ def __len__(self):
345
+ return len(self.__dict__)
346
+
347
+ def __getitem__(self, key):
348
+ return getattr(self, key)
349
+
350
+ def __setitem__(self, key, value):
351
+ return setattr(self, key, value)
352
+
353
+ def __contains__(self, key):
354
+ return key in self.__dict__
355
+
356
+ def __repr__(self):
357
+ return self.__dict__.__repr__()