import argparse import numpy import numpy as np import pydub import torch import commons import utils from models import SynthesizerTrn from text import cleaned_text_to_sequence, get_bert from text.cleaner import clean_text from text.symbols import symbols # 当前版本信息 latest_version = "2.0" def get_net_g(model_path: str, device: str, hps): net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ).to(device) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) return net_g def get_text(text, language_str, hps, device): # 在此处实现当前版本的get_text norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert = get_bert(norm_text, word2ph, language_str, device) del word2ph assert bert.shape[-1] == len(phone), phone if language_str == "ZH": bert = bert sh_bert = torch.zeros(1024, len(phone)) en_bert = torch.zeros(1024, len(phone)) elif language_str == "SH": bert = torch.zeros(1024, len(phone)) sh_bert = bert en_bert = torch.zeros(1024, len(phone)) elif language_str == "EN": bert = torch.zeros(1024, len(phone)) sh_bert = torch.zeros(1024, len(phone)) en_bert = bert else: raise ValueError("language_str should be ZH, SH or EN") assert bert.shape[-1] == len(phone), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, sh_bert, en_bert, phone, tone, language def infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, device, ): bert, sh_bert, en_bert, phones, tones, lang_ids = get_text(text, language, hps, device) with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) sh_bert = sh_bert.to(device).unsqueeze(0) en_bert = en_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sh_bert, en_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers torch.cuda.empty_cache() return audio def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, default='configs/config.json') parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--model_path', type=str, default='models/G_1000.pth') parser.add_argument('--output', type=str, default='sample') args = parser.parse_args() hps = utils.get_hparams_from_file(args.config) net_g = get_net_g(args.model_path, device=args.device, hps=hps) # noise_scale = 0.667 # noise_scale_w = 0.8 # length_scale = 0.9 sdp_ratio = 0 noise_scale = 0.667 noise_scale_w = 0.8 length_scale = 0.9 def do_sample(texts, sid, export_tag): audio_data = numpy.array([], dtype=numpy.float32) for (sub_text, language) in texts: sub_audio_data = infer(sub_text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language, hps, net_g, args.device) audio_data = np.concatenate((audio_data, sub_audio_data)) audio_data = audio_data / numpy.abs(audio_data).max() audio_data = audio_data * 32767 audio_data = audio_data.astype(numpy.int16) sound = pydub.AudioSegment(audio_data, frame_rate=hps.data.sampling_rate, sample_width=audio_data.dtype.itemsize, channels=1) export_filename = args.output + export_tag + sid + '.mp3' sound.export(export_filename, format='mp3') print(export_filename) text = [('我觉得有点贵。', 'ZH'), ('so expensive, can they?', 'EN'), ('哈巨,吃不消它。', 'SH')] do_sample(text, '小庄', '_1_') do_sample(text, '小嘟', '_1_') do_sample(text, 'Jane', '_1_') do_sample(text, '小贝', '_1_') do_sample(text, '老克勒', '_1_') do_sample(text, '美琳', '_1_') pass if __name__ == "__main__": main()