Spaces:
Runtime error
Runtime error
import streamlit as st | |
import replicate | |
import os | |
from transformers import AutoTokenizer | |
# # Assuming you have a specific tokenizers for Llama; if not, use an appropriate one like this | |
# tokenizer = AutoTokenizer.from_pretrained("allenai/llama") | |
# text = "Example text to tokenize." | |
# tokens = tokenizer.tokenize(text) | |
# num_tokens = len(tokens) | |
# print("Number of tokens:", num_tokens) | |
# App title | |
st.set_page_config(page_title="Snowflake Arctic") | |
# Replicate Credentials | |
with st.sidebar: | |
st.title('Snowflake Arctic') | |
if 'REPLICATE_API_TOKEN' in st.secrets: | |
#st.success('API token loaded!', icon='β ') | |
replicate_api = st.secrets['REPLICATE_API_TOKEN'] | |
else: | |
replicate_api = st.text_input('Enter Replicate API token:', type='password') | |
if not (replicate_api.startswith('r8_') and len(replicate_api)==40): | |
st.warning('Please enter your Replicate API token.', icon='β οΈ') | |
st.markdown("**Don't have an API token?** Head over to [Replicate](https://replicate.com) to sign up for one.") | |
#else: | |
# st.success('API token loaded!', icon='β ') | |
os.environ['REPLICATE_API_TOKEN'] = replicate_api | |
st.subheader("Adjust model parameters") | |
temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=5.0, value=0.3, step=0.01) | |
top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01) | |
# Store LLM-generated responses | |
if "messages" not in st.session_state.keys(): | |
st.session_state.messages = [{"role": "assistant", "content": "Hi. I'm Arctic, a new, efficient, intelligent, and truly open language model created by Snowflake AI Research. Ask me anything."}] | |
# Display or clear chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
def clear_chat_history(): | |
st.session_state.messages = [{"role": "assistant", "content": "Hi. I'm Arctic, a new, efficient, intelligent, and truly open language model created by Snowflake AI Research. Ask me anything."}] | |
st.sidebar.button('Clear chat history', on_click=clear_chat_history) | |
st.sidebar.caption('Built by [Snowflake](https://snowflake.com/) to demonstrate [Snowflake Arctic](https://www.snowflake.com/blog/arctic-open-and-efficient-foundation-language-models-snowflake).') | |
def get_tokenizer(): | |
"""Get a tokenizer to make sure we're not sending too much text | |
text to the Model. Eventually we will replace this with ArcticTokenizer | |
""" | |
return AutoTokenizer.from_pretrained("huggyllama/llama-7b") | |
def get_num_tokens(prompt): | |
"""Get the number of tokens in a given prompt""" | |
tokenizer = get_tokenizer() | |
tokens = tokenizer.tokenize(prompt) | |
return len(tokens) | |
# Function for generating Snowflake Arctic response | |
def generate_arctic_response(): | |
prompt = [] | |
for dict_message in st.session_state.messages: | |
if dict_message["role"] == "user": | |
prompt.append("<|im_start|>user\n" + dict_message["content"] + "<|im_end|>") | |
else: | |
prompt.append("<|im_start|>assistant\n" + dict_message["content"] + "<|im_end|>") | |
prompt.append("<|im_start|>assistant") | |
prompt.append("") | |
prompt_str = "\n".join(prompt) | |
if get_num_tokens(prompt_str) >= 3072: | |
st.error("Conversation length too long. Please keep it under 3072 tokens.") | |
st.button('Clear chat history', on_click=clear_chat_history, key="clear_chat_history") | |
st.stop() | |
for event in replicate.stream("snowflake/snowflake-arctic-instruct", | |
input={"prompt": prompt_str, | |
"prompt_template": r"{prompt}", | |
"temperature": temperature, | |
"top_p": top_p, | |
}): | |
yield str(event) | |
# User-provided prompt | |
if prompt := st.chat_input(disabled=not replicate_api): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Generate a new response if last message is not from assistant | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
response = generate_arctic_response() | |
full_response = st.write_stream(response) | |
message = {"role": "assistant", "content": full_response} | |
st.session_state.messages.append(message) |