Sohaib36 commited on
Commit
b550f25
1 Parent(s): 6705a8b

add: changes

Browse files
Files changed (2) hide show
  1. .gitattributes +1 -0
  2. app.py +32 -1
.gitattributes CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
  monoscene_kitti.ckpt filter=lfs diff=lfs merge=lfs -text
 
 
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
  monoscene_kitti.ckpt filter=lfs diff=lfs merge=lfs -text
29
+ monoscene_nyu.ckpt filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -22,10 +22,41 @@ model = MonoScene.load_from_checkpoint(
22
  full_scene_size=(60, 36, 60),
23
  )
24
 
25
- img_W, img_H = 640, 480
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  def predict(img):
 
29
  img = np.array(img, dtype=np.float32, copy=False) / 255.0
30
 
31
  normalize_rgb = transforms.Compose(
 
22
  full_scene_size=(60, 36, 60),
23
  )
24
 
 
25
 
26
+ def get_projections(img_W, img_H):
27
+ scale_3ds = [1, 2]
28
+ data = {}
29
+ for scale_3d in scale_3ds:
30
+ scene_size = (4.8, 4.8, 2.88)
31
+ vox_origin = np.array([-1.54591799, 0.8907361 , -0.05 ])
32
+ voxel_size = 0.08
33
+
34
+
35
+ cam_k = np.array([[518.8579, 0, 320], [0, 518.8579, 240], [0, 0, 1]])
36
+ cam_pose = np.asarray([[ 9.6699458e-01, 4.2662762e-02, 2.5120059e-01, 0.0000000e+00],
37
+ [-2.5147417e-01, 1.0867463e-03, 9.6786356e-01, 0.0000000e+00],
38
+ [ 4.1018680e-02, -9.9908894e-01, 1.1779292e-02, 1.1794727e+00],
39
+ [ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00]])
40
+ T_velo_2_cam = np.linalg.inv(cam_pose)
41
+
42
+ # compute the 3D-2D mapping
43
+ projected_pix, fov_mask, pix_z = vox2pix(
44
+ T_velo_2_cam,
45
+ cam_k,
46
+ vox_origin,
47
+ voxel_size * scale_3d,
48
+ img_W,
49
+ img_H,
50
+ scene_size,
51
+ )
52
+
53
+ data["projected_pix_{}".format(scale_3d)] = projected_pix
54
+ data["pix_z_{}".format(scale_3d)] = pix_z
55
+ data["fov_mask_{}".format(scale_3d)] = fov_mask
56
+ return data
57
 
58
  def predict(img):
59
+ img_W, img_H = 640, 480
60
  img = np.array(img, dtype=np.float32, copy=False) / 255.0
61
 
62
  normalize_rgb = transforms.Compose(