Spaces:
Build error
Build error
add: adding nyu model
Browse files
app.py
CHANGED
@@ -15,43 +15,46 @@ torch.set_grad_enabled(False)
|
|
15 |
# "anhquancao/monoscene_kitti", trust_remote_code=True, revision='bf033f87c2a86b60903ab811b790a1532c1ae313'
|
16 |
# )#.cuda()
|
17 |
model = MonoScene.load_from_checkpoint(
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
)
|
25 |
|
26 |
-
img_W, img_H =
|
27 |
|
28 |
|
29 |
def predict(img):
|
30 |
img = np.array(img, dtype=np.float32, copy=False) / 255.0
|
31 |
|
32 |
normalize_rgb = transforms.Compose(
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
img = normalize_rgb(img)
|
41 |
-
|
42 |
batch = get_projections(img_W, img_H)
|
43 |
batch["img"] = img
|
44 |
for k in batch:
|
45 |
-
batch[k] = batch[k].unsqueeze(0)
|
46 |
|
47 |
pred = model(batch).squeeze()
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
return fig
|
54 |
-
|
55 |
|
56 |
description = """
|
57 |
MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
|
@@ -66,7 +69,7 @@ The output is <b>downsampled by 2</b> for faster rendering. <b>Darker</b> colors
|
|
66 |
</center>
|
67 |
"""
|
68 |
title = "MonoScene: Monocular 3D Semantic Scene Completion"
|
69 |
-
article="""
|
70 |
<center>
|
71 |
We also released a <b>smaller</b> MonoScene model (Half resolution - w/o 3D CRP) at: <a href="https://huggingface.co/spaces/CVPR/monoscene_lite">https://huggingface.co/spaces/CVPR/monoscene_lite</a>
|
72 |
<img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene&left_color=darkmagenta&right_color=purple' alt='visitor badge'>
|
@@ -110,11 +113,10 @@ examples = [
|
|
110 |
]
|
111 |
|
112 |
|
113 |
-
|
114 |
demo = gr.Interface(
|
115 |
-
predict,
|
116 |
-
gr.Image(shape=(1220, 370)),
|
117 |
-
gr.Plot(),
|
118 |
article=article,
|
119 |
title=title,
|
120 |
enable_queue=True,
|
@@ -124,4 +126,4 @@ demo = gr.Interface(
|
|
124 |
description=description)
|
125 |
|
126 |
|
127 |
-
demo.launch(enable_queue=True, debug=False)
|
|
|
15 |
# "anhquancao/monoscene_kitti", trust_remote_code=True, revision='bf033f87c2a86b60903ab811b790a1532c1ae313'
|
16 |
# )#.cuda()
|
17 |
model = MonoScene.load_from_checkpoint(
|
18 |
+
"monoscene_nyu.ckpt",
|
19 |
+
dataset="NYU",
|
20 |
+
feature=200,
|
21 |
+
project_scale=1,
|
22 |
+
full_scene_size=(60, 36, 60),
|
23 |
+
)
|
|
|
24 |
|
25 |
+
img_W, img_H = 640, 480
|
26 |
|
27 |
|
28 |
def predict(img):
|
29 |
img = np.array(img, dtype=np.float32, copy=False) / 255.0
|
30 |
|
31 |
normalize_rgb = transforms.Compose(
|
32 |
+
[
|
33 |
+
transforms.ToTensor(),
|
34 |
+
transforms.Normalize(
|
35 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
36 |
+
),
|
37 |
+
]
|
38 |
+
)
|
39 |
img = normalize_rgb(img)
|
40 |
+
|
41 |
batch = get_projections(img_W, img_H)
|
42 |
batch["img"] = img
|
43 |
for k in batch:
|
44 |
+
batch[k] = batch[k].unsqueeze(0) # .cuda()
|
45 |
|
46 |
pred = model(batch).squeeze()
|
47 |
+
y_pred = torch.softmax(pred["ssc_logit"], dim=1).detach().cpu().numpy()
|
48 |
+
cam_pose = np.asarray([[ 9.6699458e-01, 4.2662762e-02, 2.5120059e-01, 0.0000000e+00],
|
49 |
+
[-2.5147417e-01, 1.0867463e-03, 9.6786356e-01, 0.0000000e+00],
|
50 |
+
[ 4.1018680e-02, -9.9908894e-01, 1.1779292e-02, 1.1794727e+00],
|
51 |
+
[ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00]])
|
52 |
+
vox_origin = np.array([-1.54591799, 0.8907361 , -0.05 ])
|
53 |
+
|
54 |
+
fig = draw(y_pred.squeeze(),cam_pose, vox_origin)
|
55 |
|
56 |
return fig
|
57 |
+
|
58 |
|
59 |
description = """
|
60 |
MonoScene Demo on SemanticKITTI Validation Set (Sequence 08), which uses the <b>camera parameters of Sequence 08</b>.
|
|
|
69 |
</center>
|
70 |
"""
|
71 |
title = "MonoScene: Monocular 3D Semantic Scene Completion"
|
72 |
+
article = """
|
73 |
<center>
|
74 |
We also released a <b>smaller</b> MonoScene model (Half resolution - w/o 3D CRP) at: <a href="https://huggingface.co/spaces/CVPR/monoscene_lite">https://huggingface.co/spaces/CVPR/monoscene_lite</a>
|
75 |
<img src='https://visitor-badge.glitch.me/badge?page_id=anhquancao.MonoScene&left_color=darkmagenta&right_color=purple' alt='visitor badge'>
|
|
|
113 |
]
|
114 |
|
115 |
|
|
|
116 |
demo = gr.Interface(
|
117 |
+
predict,
|
118 |
+
gr.Image(shape=(1220, 370)),
|
119 |
+
gr.Plot(),
|
120 |
article=article,
|
121 |
title=title,
|
122 |
enable_queue=True,
|
|
|
126 |
description=description)
|
127 |
|
128 |
|
129 |
+
demo.launch(enable_queue=True, debug=False)
|