# from PIL import Image # from io import BytesIO # from transformers import AutoImageProcessor, AutoModelForImageClassification # # Load model # processor = AutoImageProcessor.from_pretrained("taroii/pothole-detection-model") # model = AutoModelForImageClassification.from_pretrained("taroii/pothole-detection-model") # # Function to predict if an image contains a pothole # def predict_pothole(image_url): # image = Image.open(BytesIO(image_url)) # inputs = processor(images=image, return_tensors="pt") # # Perform inference # outputs = model(**inputs) # logits = outputs.logits # probabilities = logits.softmax(dim=1) # # Get predicted class (0: No pothole, 1: Pothole) # predicted_class = probabilities.argmax().item() # confidence = probabilities[0, predicted_class].item() # return predicted_class import tensorflow as tf from PIL import Image, ImageOps import numpy as np import requests from io import BytesIO from keras.models import load_model def load_image_model(image): # Disable scientific notation for clarity np.set_printoptions(suppress=True) # Load the model from the URL model = load_model("keras_model.h5", compile=False) # Load the labels class_names = open("labels.txt", "r").readlines() # Create the array of the right shape to feed into the keras model # The 'length' or number of images you can put into the array is # determined by the first position in the shape tuple, in this case 1 data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) # Replace this with the path to your image image = Image.open(BytesIO(image)).convert("RGB") # resizing the image to be at least 224x224 and then cropping from the center size = (224, 224) image = ImageOps.fit(image, size, Image.Resampling.LANCZOS) # turn the image into a numpy array image_array = np.asarray(image) # Normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 # Load the image into the array data[0] = normalized_image_array # Predicts the model prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index] confidence_score = prediction[0][index] # Print prediction and confidence score print("Class:", class_name[2:], end="") print("Confidence Score:", confidence_score) return class_name