Spaces:
Runtime error
Runtime error
File size: 2,542 Bytes
b9cc655 c9ec478 0e66889 a3281f6 b9cc655 a3281f6 775d1c1 a3281f6 775d1c1 a3281f6 c9ec478 a3281f6 c9ec478 775d1c1 c9ec478 0e66889 b9cc655 c9ec478 0e66889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from keypoints_extraction import predict_pose
from calculate_measures import calculate_all_measures
from calculate_masks import calculate_seg_mask
from select_body_shape import select_body_shape
import os
os.system("pip install xtcocotools>=1.12")
os.system("pip install 'mmengine>=0.6.0'")
os.system("pip install 'mmcv>=2.0.0rc4,<2.1.0'")
os.system("pip install 'mmdet>=3.0.0,<4.0.0'")
os.system("pip install 'mmpose'")
import gradio as gr
def generate_output(front_img_path, side_img_path):
# TODO: These file names will need to be unique in case of multiple requests at once, and they will need to be deleted after the function is done.
front_keypoint_result = predict_pose(front_img_path, "front.jpg")
side_keypoint_result = predict_pose(side_img_path, "side.jpg")
# Should we create the image separately? Seems weird to get it as a result from this only to use it in something else below.
front_image = front_keypoint_result[0]
side_image = side_keypoint_result[0]
front_keypoint_data = front_keypoint_result[1]
side_keypoint_data = side_keypoint_result[1]
front_seg_mask = calculate_seg_mask(front_img_path)
side_rcnn_mask = calculate_seg_mask(side_img_path) # TODO: Is this the correct mask? In the original code there is a function called 'get_rcnn_mask' which is not used anywhere. The name implies that it should be a rcnn mask, but the code actually requests a seg mask.
measures_data_frame = calculate_all_measures(front_image, side_image, front_keypoint_data, side_keypoint_data, front_seg_mask, side_rcnn_mask)
# TODO: Normalise the measures somehow? Don't understand how this works yet if it is for a single person. Do we need to do this? Or not?
normalised_measures_data_frame = measures_data_frame
selected_body_shape = select_body_shape(normalised_measures_data_frame)
return (selected_body_shape)
input_image_front = gr.inputs.Image(type='pil', label="Front Image")
input_image_side = gr.inputs.Image(type='pil', label="Side Image")
# output_image_front = gr.outputs.Image(type="pil", label="Front Output Image")
# output_text_front = gr.outputs.Textbox(label="Front Output Text")
# output_image_side = gr.outputs.Image(type="pil", label="Front Output Image")
# output_text_side = gr.outputs.Textbox(label="Side Output Text")
output_body_shape = gr.outputs.Textbox(label="Body Shape")
title = "ShopByShape"
iface = gr.Interface(fn=generate_output, inputs=[input_image_front, input_image_side], outputs=[output_body_shape], title=title)
iface.launch()
|