import cv2 import numpy as np import torch from mmpose.apis import inference_topdown, init_model from mmpose.utils import register_all_modules register_all_modules() def save_image(img, img_path): # Convert PIL image to OpenCV image img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # Save OpenCV image cv2.imwrite(img_path, img) def predict_pose(img, img_path): save_image(img, img_path) result = mmpose_coco(img_path) keypoints = result[0].pred_instances['keypoints'][0] # Create a dictionary to store keypoints and their names keypoints_data = { 'keypoints': keypoints.tolist(), 'keypoint_names': [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] } return (img, keypoints_data) def mmpose_coco(img_path, config_file = 'mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py', checkpoint_file = 'mmpose/td-hm_hrnet-w48_8xb32-210e_coco-256x192-0e67c616_20220913.pth'): device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu' # coco keypoints: # https://github.com/open-mmlab/mmpose/blob/master/mmpose/datasets/datasets/top_down/topdown_coco_dataset.py#L28 model = init_model(config_file, checkpoint_file, device=device) results = inference_topdown(model, img_path) return results