import os os.system("pip install xtcocotools>=1.12") os.system("pip install 'mmengine>=0.6.0'") os.system("pip install 'mmcv>=2.0.0rc4,<2.1.0'") os.system("pip install 'mmdet>=3.0.0,<4.0.0'") os.system("pip install 'mmpose'") import PIL import cv2 import mmpose import numpy as np import torch from mmpose.apis import MMPoseInferencer import gradio as gr import warnings warnings.filterwarnings("ignore") mmpose_model_list = ["human", "hand", "face", "animal", "wholebody", "vitpose", "vitpose-s", "vitpose-b", "vitpose-l", "vitpose-h"] def save_image(img, img_path): # Convert PIL image to OpenCV image img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # Save OpenCV image cv2.imwrite(img_path, img) # def download_test_image(): # # Images # torch.hub.download_url_to_file( # 'https://user-images.githubusercontent.com/59380685/266264420-21575a83-4057-41cf-8a4a-b3ea6f332d79.jpg', # 'bus.jpg') # torch.hub.download_url_to_file( # 'https://user-images.githubusercontent.com/59380685/266264536-82afdf58-6b9a-4568-b9df-551ee72cb6d9.jpg', # 'dogs.jpg') # torch.hub.download_url_to_file( # 'https://user-images.githubusercontent.com/59380685/266264600-9d0c26ca-8ba6-45f2-b53b-4dc98460c43e.jpg', # 'zidane.jpg') def predict_pose(img, model_name): img_path = "input_img.jpg" out_dir = "./output"; save_image(img, img_path) device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu' inferencer = MMPoseInferencer(model_name, device=device) result_generator = inferencer(img_path, show=False, out_dir=out_dir) result = next(result_generator) print(result) save_dir = './output/visualizations/' if os.path.exists(save_dir): out_img_path = save_dir + img_path print("out_img_path: ", out_img_path) else: out_img_path = img_path out_img = PIL.Image.open(out_img_path) return (out_img, result) # download_test_image() input_image = gr.inputs.Image(type='pil', label="Original Image") model_name = gr.inputs.Dropdown(choices=[m for m in mmpose_model_list], label='Model') output_image = gr.outputs.Image(type="pil", label="Output Image") output_text = gr.outputs.Textbox(label="Output Text") title = "MMPose detection for ShopByShape" iface = gr.Interface(fn=predict_pose, inputs=[input_image, model_name], outputs=[output_image, output_text], title=title) iface.launch()