SoulXS2 commited on
Commit
d5bf9ff
·
verified ·
1 Parent(s): 1d9fa7b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -59
app.py CHANGED
@@ -1,63 +1,60 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
2
+ import torch
3
  import gradio as gr
4
+
5
+ # Define the training arguments
6
+ training_args = TrainingArguments(
7
+ per_device_train_batch_size=4,
8
+ num_train_epochs=3,
9
+ logging_dir='./logs',
10
+ )
11
+
12
+ # Load the pre-trained GPT-2 model and tokenizer
13
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
14
+ model = GPT2LMHeadModel.from_pretrained("gpt2")
15
+
16
+ # Example training data
17
+ training_data = [
18
+ "What is your name?",
19
+ "How are you?",
20
+ "What do you do?",
21
+ "Tell me about yourself."
22
+ ]
23
+
24
+ # Tokenize the training data
25
+ input_ids = tokenizer(training_data, return_tensors="pt", padding=True, truncation=True)["input_ids"]
26
+
27
+ # Define a dummy data collator (required by Trainer)
28
+ class DummyDataCollator:
29
+ def __call__(self, features):
30
+ return features
31
+
32
+ # Define a Trainer instance
33
+ trainer = Trainer(
34
+ model=model,
35
+ args=training_args,
36
+ data_collator=DummyDataCollator(),
37
+ train_dataset=input_ids
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  )
39
 
40
+ # Train the model
41
+ trainer.train()
42
+
43
+ # Define the chatbot function
44
+ def chatbot(input_text):
45
+ # Tokenize input text
46
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
47
+
48
+ # Generate response from the model
49
+ output_ids = model.generate(input_ids, max_length=50, pad_token_id=tokenizer.eos_token_id)
50
+
51
+ # Decode the generated response
52
+ response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
53
+
54
+ return response
55
+
56
+ # Create the Gradio interface
57
+ chatbot_interface = gr.Interface(chatbot, "textbox", "textbox", title="Chatbot")
58
 
59
+ # Launch the Gradio interface
60
+ chatbot_interface.launch()