import gradio as gr from diffusers import StableDiffusionPipeline import torch from PIL import Image import io from huggingface_hub import login import os from huggingface_hub import hf_hub_download # Authenticate with Hugging Face login(token=os.environ.get('your_huggingface_token_here')) # Load the Stable Fast 3D model # Try to download the model config to see if you have access model_id = "stabilityai/stable-fast-3d" try: config_file = hf_hub_download(repo_id=model_id, filename="config.json") print("Successfully accessed the model!") except Exception as e: print(f"Error accessing the model: {e}") pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") def convert_2d_to_3d(input_image, prompt): # Prepare the input image if input_image is not None: input_image = Image.open(io.BytesIO(input_image)) input_image = input_image.resize((512, 512)) # Generate the 3D preview output_image = pipe( prompt=prompt, image=input_image, num_inference_steps=50, guidance_scale=7.5 ).images[0] return output_image # Create the Gradio interface iface = gr.Interface( fn=convert_2d_to_3d, inputs=[ gr.Image(type="filepath", label="Upload 2D Floor Layout"), gr.Textbox(label="Prompt (e.g., '3D render of a modern apartment floor plan')") ], outputs=gr.Image(type="pil", label="3D Preview"), title="2D to 3D Floor Layout Converter", description="Upload a 2D floor layout image and get a 3D preview using Stable Fast 3D model." ) # Launch the app iface.launch()