|
from flask import Flask, request, jsonify |
|
import torch |
|
import shutil |
|
import os |
|
import sys |
|
from argparse import ArgumentParser |
|
from time import strftime |
|
from argparse import Namespace |
|
from src.utils.preprocess import CropAndExtract |
|
from src.test_audio2coeff import Audio2Coeff |
|
from src.facerender.animate import AnimateFromCoeff |
|
from src.generate_batch import get_data |
|
from src.generate_facerender_batch import get_facerender_data |
|
|
|
import tempfile |
|
from openai import OpenAI |
|
import threading |
|
import elevenlabs |
|
from elevenlabs import set_api_key, generate, play, clone |
|
from flask_cors import CORS, cross_origin |
|
|
|
import uuid |
|
import time |
|
|
|
start_time = time.time() |
|
|
|
class AnimationConfig: |
|
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,still,preprocess,ref_pose_video_path): |
|
self.driven_audio = driven_audio_path |
|
self.source_image = source_image_path |
|
self.ref_eyeblink = None |
|
self.ref_pose = ref_pose_video_path |
|
self.checkpoint_dir = './checkpoints' |
|
self.result_dir = result_folder |
|
self.pose_style = pose_style |
|
self.batch_size = 2 |
|
self.expression_scale = expression_scale |
|
self.input_yaw = None |
|
self.input_pitch = None |
|
self.input_roll = None |
|
self.enhancer = None |
|
self.background_enhancer = None |
|
self.cpu = False |
|
self.face3dvis = False |
|
self.still = still |
|
self.preprocess = preprocess |
|
self.verbose = False |
|
self.old_version = False |
|
self.net_recon = 'resnet50' |
|
self.init_path = None |
|
self.use_last_fc = False |
|
self.bfm_folder = './checkpoints/BFM_Fitting/' |
|
self.bfm_model = 'BFM_model_front.mat' |
|
self.focal = 1015. |
|
self.center = 112. |
|
self.camera_d = 10. |
|
self.z_near = 5. |
|
self.z_far = 15. |
|
self.device = 'cpu' |
|
|
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
|
|
TEMP_DIR = None |
|
|
|
app.config['temp_response'] = None |
|
app.config['generation_thread'] = None |
|
app.config['text_prompt'] = None |
|
app.config['final_video_path'] = None |
|
|
|
|
|
|
|
def main(args): |
|
pic_path = args.source_image |
|
audio_path = args.driven_audio |
|
save_dir = args.result_dir |
|
pose_style = args.pose_style |
|
device = args.device |
|
batch_size = args.batch_size |
|
input_yaw_list = args.input_yaw |
|
input_pitch_list = args.input_pitch |
|
input_roll_list = args.input_roll |
|
ref_eyeblink = args.ref_eyeblink |
|
ref_pose = args.ref_pose |
|
preprocess = args.preprocess |
|
|
|
dir_path = os.path.dirname(os.path.realpath(__file__)) |
|
current_root_path = dir_path |
|
print('current_root_path ',current_root_path) |
|
|
|
|
|
|
|
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat') |
|
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth') |
|
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting') |
|
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth') |
|
|
|
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth') |
|
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') |
|
|
|
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth') |
|
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') |
|
|
|
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar') |
|
|
|
if preprocess == 'full': |
|
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar') |
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') |
|
else: |
|
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar') |
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') |
|
|
|
|
|
|
|
print(path_of_net_recon_model) |
|
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) |
|
|
|
|
|
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, |
|
audio2exp_checkpoint, audio2exp_yaml_path, |
|
wav2lip_checkpoint, device) |
|
|
|
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, |
|
facerender_yaml_path, device) |
|
|
|
first_frame_dir = os.path.join(save_dir, 'first_frame_dir') |
|
os.makedirs(first_frame_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
|
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True) |
|
print('first_coeff_path ',first_coeff_path) |
|
print('crop_pic_path ',crop_pic_path) |
|
|
|
if first_coeff_path is None: |
|
print("Can't get the coeffs of the input") |
|
return |
|
|
|
if ref_eyeblink is not None: |
|
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0] |
|
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname) |
|
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True) |
|
|
|
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir) |
|
else: |
|
ref_eyeblink_coeff_path=None |
|
print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path) |
|
|
|
if ref_pose is not None: |
|
if ref_pose == ref_eyeblink: |
|
ref_pose_coeff_path = ref_eyeblink_coeff_path |
|
else: |
|
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0] |
|
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname) |
|
os.makedirs(ref_pose_frame_dir, exist_ok=True) |
|
|
|
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir) |
|
else: |
|
ref_pose_coeff_path=None |
|
print('ref_eyeblink_coeff_path',ref_pose_coeff_path) |
|
|
|
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still) |
|
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path) |
|
|
|
|
|
if args.face3dvis: |
|
from src.face3d.visualize import gen_composed_video |
|
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, |
|
batch_size, input_yaw_list, input_pitch_list, input_roll_list, |
|
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) |
|
|
|
|
|
|
|
|
|
|
|
result, base64_video,temp_file_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \ |
|
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) |
|
|
|
print('The generated video is named:') |
|
app.config['temp_response'] = base64_video |
|
app.config['final_video_path'] = temp_file_path |
|
return base64_video, temp_file_path |
|
|
|
|
|
|
|
|
|
if not args.verbose: |
|
shutil.rmtree(save_dir) |
|
|
|
def create_temp_dir(): |
|
return tempfile.TemporaryDirectory() |
|
|
|
def save_uploaded_file(file, filename,TEMP_DIR): |
|
unique_filename = str(uuid.uuid4()) + "_" + filename |
|
file_path = os.path.join(TEMP_DIR.name, unique_filename) |
|
file.save(file_path) |
|
return file_path |
|
|
|
client = OpenAI(api_key="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") |
|
|
|
def translate_text(text_prompt, target_language): |
|
response = client.chat.completions.create( |
|
model="gpt-4o-mini", |
|
messages=[{"role": "system", "content": "You are a helpful language translator assistant."}, |
|
{"role": "user", "content": f"Translate completely without hallucination, end to end and the ouput should just be the translation of the text prompt and nothing else, and give the following text to {target_language} language and the text is: {text_prompt}"}, |
|
], |
|
max_tokens = len(text_prompt) + 200 |
|
|
|
|
|
) |
|
return response |
|
|
|
|
|
|
|
@app.route("/run", methods=['POST']) |
|
def generate_video(): |
|
global TEMP_DIR |
|
TEMP_DIR = create_temp_dir() |
|
print('request:',request.method) |
|
try: |
|
if request.method == 'POST': |
|
source_image = request.files['source_image'] |
|
text_prompt = request.form['text_prompt'] |
|
print('Input text prompt: ',text_prompt) |
|
voice_cloning = request.form.get('voice_cloning', 'no') |
|
target_language = request.form.get('target_language', 'original_text') |
|
print('target_language',target_language) |
|
pose_style = int(request.form.get('pose_style', 1)) |
|
expression_scale = float(request.form.get('expression_scale', 1)) |
|
enhancer = request.form.get('enhancer', None) |
|
voice_gender = request.form.get('voice_gender', 'male') |
|
still_str = request.form.get('still', 'False') |
|
still = still_str.lower() == 'false' |
|
print('still', still) |
|
preprocess = request.form.get('preprocess', 'crop') |
|
print('preprocess selected: ',preprocess) |
|
ref_pose_video = request.files.get('ref_pose', None) |
|
|
|
if target_language != 'original_text': |
|
response = translate_text(text_prompt, target_language) |
|
|
|
text_prompt = response.choices[0].message.content.strip() |
|
|
|
app.config['text_prompt'] = text_prompt |
|
print('Final text prompt: ',text_prompt) |
|
|
|
source_image_path = save_uploaded_file(source_image, 'source_image.mp4',TEMP_DIR) |
|
print(source_image_path) |
|
|
|
|
|
|
|
if voice_cloning == 'no': |
|
if voice_gender == 'male': |
|
voice = 'echo' |
|
print('Entering Audio creation using elevenlabs') |
|
set_api_key("92e149985ea2732b4359c74346c3daee") |
|
|
|
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4) |
|
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
for chunk in audio: |
|
temp_file.write(chunk) |
|
driven_audio_path = temp_file.name |
|
print('driven_audio_path',driven_audio_path) |
|
print('Audio file saved using elevenlabs') |
|
|
|
else: |
|
voice = 'nova' |
|
|
|
print('Entering Audio creation using whisper') |
|
response = client.audio.speech.create(model="tts-1-hd", |
|
voice=voice, |
|
input = text_prompt) |
|
|
|
print('Audio created using whisper') |
|
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
driven_audio_path = temp_file.name |
|
|
|
response.write_to_file(driven_audio_path) |
|
print('Audio file saved using whisper') |
|
|
|
elif voice_cloning == 'yes': |
|
user_voice = request.files['user_voice'] |
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="user_voice_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
user_voice_path = temp_file.name |
|
user_voice.save(user_voice_path) |
|
print('user_voice_path',user_voice_path) |
|
|
|
set_api_key("92e149985ea2732b4359c74346c3daee") |
|
voice = clone(name = "User Cloned Voice", |
|
files = [user_voice_path] ) |
|
|
|
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4) |
|
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
for chunk in audio: |
|
temp_file.write(chunk) |
|
driven_audio_path = temp_file.name |
|
print('driven_audio_path',driven_audio_path) |
|
|
|
|
|
|
|
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) |
|
result_folder = os.path.join(save_dir, "results") |
|
os.makedirs(result_folder, exist_ok=True) |
|
|
|
ref_pose_video_path = None |
|
if ref_pose_video: |
|
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
ref_pose_video_path = temp_file.name |
|
ref_pose_video.save(ref_pose_video_path) |
|
print('ref_pose_video_path',ref_pose_video_path) |
|
|
|
except Exception as e: |
|
app.logger.error(f"An error occurred: {e}") |
|
return "An error occurred", 500 |
|
|
|
|
|
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path) |
|
|
|
if torch.cuda.is_available() and not args.cpu: |
|
args.device = "cuda" |
|
else: |
|
args.device = "cpu" |
|
|
|
generation_thread = threading.Thread(target=main, args=(args,)) |
|
app.config['generation_thread'] = generation_thread |
|
generation_thread.start() |
|
response_data = {"message": "Video generation started", |
|
"process_id": generation_thread.ident} |
|
|
|
return jsonify(response_data) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/status", methods=["GET"]) |
|
def check_generation_status(): |
|
global TEMP_DIR |
|
response = {"base64_video": "","text_prompt":"", "status": ""} |
|
process_id = request.args.get('process_id', None) |
|
|
|
|
|
if process_id: |
|
generation_thread = app.config.get('generation_thread') |
|
if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive(): |
|
return jsonify({"status": "in_progress"}), 200 |
|
elif app.config.get('temp_response'): |
|
|
|
final_response = app.config['temp_response'] |
|
response["base64_video"] = final_response |
|
response["text_prompt"] = app.config.get('text_prompt') |
|
response["status"] = "completed" |
|
|
|
final_video_path = app.config['final_video_path'] |
|
print('final_video_path',final_video_path) |
|
|
|
|
|
if final_video_path and os.path.exists(final_video_path): |
|
os.remove(final_video_path) |
|
print("Deleted video file:", final_video_path) |
|
|
|
TEMP_DIR.cleanup() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end_time = time.time() |
|
total_time = round(end_time - start_time, 2) |
|
print("Total time taken for execution:", total_time, " seconds") |
|
return jsonify(response) |
|
return jsonify({"error":"No process id provided"}) |
|
|
|
@app.route("/health", methods=["GET"]) |
|
def health_status(): |
|
response = {"online": "true"} |
|
return jsonify(response) |
|
if __name__ == '__main__': |
|
app.run(debug=True) |