File size: 13,484 Bytes
04c1e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""This script defines the base network model for Deep3DFaceRecon_pytorch

"""

import os
import numpy as np
import torch
from collections import OrderedDict
from abc import ABC, abstractmethod
from . import networks


class BaseModel(ABC):
    """This class is an abstract base class (ABC) for models.

    To create a subclass, you need to implement the following five functions:

        -- <__init__>:                      initialize the class; first call BaseModel.__init__(self, opt).

        -- <set_input>:                     unpack data from dataset and apply preprocessing.

        -- <forward>:                       produce intermediate results.

        -- <optimize_parameters>:           calculate losses, gradients, and update network weights.

        -- <modify_commandline_options>:    (optionally) add model-specific options and set default options.

    """

    def __init__(self, opt):
        """Initialize the BaseModel class.



        Parameters:

            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions



        When creating your custom class, you need to implement your own initialization.

        In this fucntion, you should first call <BaseModel.__init__(self, opt)>

        Then, you need to define four lists:

            -- self.loss_names (str list):          specify the training losses that you want to plot and save.

            -- self.model_names (str list):         specify the images that you want to display and save.

            -- self.visual_names (str list):        define networks used in our training.

            -- self.optimizers (optimizer list):    define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.

        """
        self.opt = opt
        self.isTrain = False
        self.device = torch.device('cpu') 
        self.save_dir = " " # os.path.join(opt.checkpoints_dir, opt.name)  # save all the checkpoints to save_dir
        self.loss_names = []
        self.model_names = []
        self.visual_names = []
        self.parallel_names = []
        self.optimizers = []
        self.image_paths = []
        self.metric = 0  # used for learning rate policy 'plateau'

    @staticmethod
    def dict_grad_hook_factory(add_func=lambda x: x):
        saved_dict = dict()

        def hook_gen(name):
            def grad_hook(grad):
                saved_vals = add_func(grad)
                saved_dict[name] = saved_vals
            return grad_hook
        return hook_gen, saved_dict

    @staticmethod
    def modify_commandline_options(parser, is_train):
        """Add new model-specific options, and rewrite default values for existing options.



        Parameters:

            parser          -- original option parser

            is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.



        Returns:

            the modified parser.

        """
        return parser

    @abstractmethod
    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.



        Parameters:

            input (dict): includes the data itself and its metadata information.

        """
        pass

    @abstractmethod
    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        pass

    @abstractmethod
    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        pass

    def setup(self, opt):
        """Load and print networks; create schedulers



        Parameters:

            opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions

        """
        if self.isTrain:
            self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
        
        if not self.isTrain or opt.continue_train:
            load_suffix = opt.epoch
            self.load_networks(load_suffix)
 
            
        # self.print_networks(opt.verbose)

    def parallelize(self, convert_sync_batchnorm=True):
        if not self.opt.use_ddp:
            for name in self.parallel_names:
                if isinstance(name, str):
                    module = getattr(self, name)
                    setattr(self, name, module.to(self.device))
        else:
            for name in self.model_names:
                if isinstance(name, str):
                    module = getattr(self, name)
                    if convert_sync_batchnorm:
                        module = torch.nn.SyncBatchNorm.convert_sync_batchnorm(module)
                    setattr(self, name, torch.nn.parallel.DistributedDataParallel(module.to(self.device),
                        device_ids=[self.device.index], 
                        find_unused_parameters=True, broadcast_buffers=True))
            
            # DistributedDataParallel is not needed when a module doesn't have any parameter that requires a gradient.
            for name in self.parallel_names:
                if isinstance(name, str) and name not in self.model_names:
                    module = getattr(self, name)
                    setattr(self, name, module.to(self.device))
            
        # put state_dict of optimizer to gpu device
        if self.opt.phase != 'test':
            if self.opt.continue_train:
                for optim in self.optimizers:
                    for state in optim.state.values():
                        for k, v in state.items():
                            if isinstance(v, torch.Tensor):
                                state[k] = v.to(self.device)

    def data_dependent_initialize(self, data):
        pass

    def train(self):
        """Make models train mode"""
        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, name)
                net.train()

    def eval(self):
        """Make models eval mode"""
        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, name)
                net.eval()

    def test(self):
        """Forward function used in test time.



        This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop

        It also calls <compute_visuals> to produce additional visualization results

        """
        with torch.no_grad():
            self.forward()
            self.compute_visuals()

    def compute_visuals(self):
        """Calculate additional output images for visdom and HTML visualization"""
        pass

    def get_image_paths(self, name='A'):
        """ Return image paths that are used to load current data"""
        return self.image_paths if name =='A' else self.image_paths_B

    def update_learning_rate(self):
        """Update learning rates for all the networks; called at the end of every epoch"""
        for scheduler in self.schedulers:
            if self.opt.lr_policy == 'plateau':
                scheduler.step(self.metric)
            else:
                scheduler.step()

        lr = self.optimizers[0].param_groups[0]['lr']
        print('learning rate = %.7f' % lr)

    def get_current_visuals(self):
        """Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
        visual_ret = OrderedDict()
        for name in self.visual_names:
            if isinstance(name, str):
                visual_ret[name] = getattr(self, name)[:, :3, ...]
        return visual_ret

    def get_current_losses(self):
        """Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
        errors_ret = OrderedDict()
        for name in self.loss_names:
            if isinstance(name, str):
                errors_ret[name] = float(getattr(self, 'loss_' + name))  # float(...) works for both scalar tensor and float number
        return errors_ret

    def save_networks(self, epoch):
        """Save all the networks to the disk.



        Parameters:

            epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)

        """
        if not os.path.isdir(self.save_dir):
            os.makedirs(self.save_dir)

        save_filename = 'epoch_%s.pth' % (epoch)
        save_path = os.path.join(self.save_dir, save_filename)
        
        save_dict = {}
        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, name)
                if isinstance(net, torch.nn.DataParallel) or isinstance(net,
                        torch.nn.parallel.DistributedDataParallel):
                    net = net.module
                save_dict[name] = net.state_dict()
                

        for i, optim in enumerate(self.optimizers):
            save_dict['opt_%02d'%i] = optim.state_dict()

        for i, sched in enumerate(self.schedulers):
            save_dict['sched_%02d'%i] = sched.state_dict()
        
        torch.save(save_dict, save_path)

    def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
        """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
        key = keys[i]
        if i + 1 == len(keys):  # at the end, pointing to a parameter/buffer
            if module.__class__.__name__.startswith('InstanceNorm') and \
                    (key == 'running_mean' or key == 'running_var'):
                if getattr(module, key) is None:
                    state_dict.pop('.'.join(keys))
            if module.__class__.__name__.startswith('InstanceNorm') and \
               (key == 'num_batches_tracked'):
                state_dict.pop('.'.join(keys))
        else:
            self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)

    def load_networks(self, epoch):
        """Load all the networks from the disk.



        Parameters:

            epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)

        """
        if self.opt.isTrain and self.opt.pretrained_name is not None:
            load_dir = os.path.join(self.opt.checkpoints_dir, self.opt.pretrained_name)
        else:
            load_dir = self.save_dir    
        load_filename = 'epoch_%s.pth' % (epoch)
        load_path = os.path.join(load_dir, load_filename)
        state_dict = torch.load(load_path, map_location=self.device)
        print('loading the model from %s' % load_path)

        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, name)
                if isinstance(net, torch.nn.DataParallel):
                    net = net.module
                net.load_state_dict(state_dict[name])
        
        if self.opt.phase != 'test':
            if self.opt.continue_train:
                print('loading the optim from %s' % load_path)
                for i, optim in enumerate(self.optimizers):
                    optim.load_state_dict(state_dict['opt_%02d'%i])

                try:
                    print('loading the sched from %s' % load_path)
                    for i, sched in enumerate(self.schedulers):
                        sched.load_state_dict(state_dict['sched_%02d'%i])
                except:
                    print('Failed to load schedulers, set schedulers according to epoch count manually')
                    for i, sched in enumerate(self.schedulers):
                        sched.last_epoch = self.opt.epoch_count - 1
                    

            

    def print_networks(self, verbose):
        """Print the total number of parameters in the network and (if verbose) network architecture



        Parameters:

            verbose (bool) -- if verbose: print the network architecture

        """
        print('---------- Networks initialized -------------')
        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, name)
                num_params = 0
                for param in net.parameters():
                    num_params += param.numel()
                if verbose:
                    print(net)
                print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
        print('-----------------------------------------------')

    def set_requires_grad(self, nets, requires_grad=False):
        """Set requies_grad=Fasle for all the networks to avoid unnecessary computations

        Parameters:

            nets (network list)   -- a list of networks

            requires_grad (bool)  -- whether the networks require gradients or not

        """
        if not isinstance(nets, list):
            nets = [nets]
        for net in nets:
            if net is not None:
                for param in net.parameters():
                    param.requires_grad = requires_grad

    def generate_visuals_for_evaluation(self, data, mode):
        return {}