File size: 7,856 Bytes
6764da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""run bash scripts/download_models.sh first to prepare the weights file"""
import os
import shutil
from argparse import Namespace
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from cog import BasePredictor, Input, Path

checkpoints = "checkpoints"


class Predictor(BasePredictor):
    def setup(self):
        """Load the model into memory to make running multiple predictions efficient"""
        device = "cuda"

        path_of_lm_croper = os.path.join(
            checkpoints, "shape_predictor_68_face_landmarks.dat"
        )
        path_of_net_recon_model = os.path.join(checkpoints, "epoch_20.pth")
        dir_of_BFM_fitting = os.path.join(checkpoints, "BFM_Fitting")
        wav2lip_checkpoint = os.path.join(checkpoints, "wav2lip.pth")

        audio2pose_checkpoint = os.path.join(checkpoints, "auido2pose_00140-model.pth")
        audio2pose_yaml_path = os.path.join("src", "config", "auido2pose.yaml")

        audio2exp_checkpoint = os.path.join(checkpoints, "auido2exp_00300-model.pth")
        audio2exp_yaml_path = os.path.join("src", "config", "auido2exp.yaml")

        free_view_checkpoint = os.path.join(
            checkpoints, "facevid2vid_00189-model.pth.tar"
        )

        # init model
        self.preprocess_model = CropAndExtract(
            path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device
        )

        self.audio_to_coeff = Audio2Coeff(
            audio2pose_checkpoint,
            audio2pose_yaml_path,
            audio2exp_checkpoint,
            audio2exp_yaml_path,
            wav2lip_checkpoint,
            device,
        )

        self.animate_from_coeff = {
            "full": AnimateFromCoeff(
                free_view_checkpoint,
                os.path.join(checkpoints, "mapping_00109-model.pth.tar"),
                os.path.join("src", "config", "facerender_still.yaml"),
                device,
            ),
            "others": AnimateFromCoeff(
                free_view_checkpoint,
                os.path.join(checkpoints, "mapping_00229-model.pth.tar"),
                os.path.join("src", "config", "facerender.yaml"),
                device,
            ),
        }

    def predict(

        self,

        source_image: Path = Input(

            description="Upload the source image, it can be video.mp4 or picture.png",

        ),

        driven_audio: Path = Input(

            description="Upload the driven audio, accepts .wav and .mp4 file",

        ),

        enhancer: str = Input(

            description="Choose a face enhancer",

            choices=["gfpgan", "RestoreFormer"],

            default="gfpgan",

        ),

        preprocess: str = Input(

            description="how to preprocess the images",

            choices=["crop", "resize", "full"],

            default="full",

        ),

        ref_eyeblink: Path = Input(

            description="path to reference video providing eye blinking",

            default=None,

        ),

        ref_pose: Path = Input(

            description="path to reference video providing pose",

            default=None,

        ),

        still: bool = Input(

            description="can crop back to the original videos for the full body aniamtion when preprocess is full",

            default=True,

        ),

    ) -> Path:
        """Run a single prediction on the model"""

        animate_from_coeff = (
            self.animate_from_coeff["full"]
            if preprocess == "full"
            else self.animate_from_coeff["others"]
        )

        args = load_default()
        args.pic_path = str(source_image)
        args.audio_path = str(driven_audio)
        device = "cuda"
        args.still = still
        args.ref_eyeblink = None if ref_eyeblink is None else str(ref_eyeblink)
        args.ref_pose = None if ref_pose is None else str(ref_pose)

        # crop image and extract 3dmm from image
        results_dir = "results"
        if os.path.exists(results_dir):
            shutil.rmtree(results_dir)
        os.makedirs(results_dir)
        first_frame_dir = os.path.join(results_dir, "first_frame_dir")
        os.makedirs(first_frame_dir)

        print("3DMM Extraction for source image")
        first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(
            args.pic_path, first_frame_dir, preprocess, source_image_flag=True
        )
        if first_coeff_path is None:
            print("Can't get the coeffs of the input")
            return

        if ref_eyeblink is not None:
            ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[
                0
            ]
            ref_eyeblink_frame_dir = os.path.join(results_dir, ref_eyeblink_videoname)
            os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
            print("3DMM Extraction for the reference video providing eye blinking")
            ref_eyeblink_coeff_path, _, _ = self.preprocess_model.generate(
                ref_eyeblink, ref_eyeblink_frame_dir
            )
        else:
            ref_eyeblink_coeff_path = None

        if ref_pose is not None:
            if ref_pose == ref_eyeblink:
                ref_pose_coeff_path = ref_eyeblink_coeff_path
            else:
                ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
                ref_pose_frame_dir = os.path.join(results_dir, ref_pose_videoname)
                os.makedirs(ref_pose_frame_dir, exist_ok=True)
                print("3DMM Extraction for the reference video providing pose")
                ref_pose_coeff_path, _, _ = self.preprocess_model.generate(
                    ref_pose, ref_pose_frame_dir
                )
        else:
            ref_pose_coeff_path = None

        # audio2ceoff
        batch = get_data(
            first_coeff_path,
            args.audio_path,
            device,
            ref_eyeblink_coeff_path,
            still=still,
        )
        coeff_path = self.audio_to_coeff.generate(
            batch, results_dir, args.pose_style, ref_pose_coeff_path
        )
        # coeff2video
        print("coeff2video")
        data = get_facerender_data(
            coeff_path,
            crop_pic_path,
            first_coeff_path,
            args.audio_path,
            args.batch_size,
            args.input_yaw,
            args.input_pitch,
            args.input_roll,
            expression_scale=args.expression_scale,
            still_mode=still,
            preprocess=preprocess,
        )
        animate_from_coeff.generate(
            data, results_dir, args.pic_path, crop_info,
            enhancer=enhancer, background_enhancer=args.background_enhancer,
            preprocess=preprocess)

        output = "/tmp/out.mp4"
        mp4_path = os.path.join(results_dir, [f for f in os.listdir(results_dir) if "enhanced.mp4" in f][0])
        shutil.copy(mp4_path, output)

        return Path(output)


def load_default():
    return Namespace(
        pose_style=0,
        batch_size=2,
        expression_scale=1.0,
        input_yaw=None,
        input_pitch=None,
        input_roll=None,
        background_enhancer=None,
        face3dvis=False,
        net_recon="resnet50",
        init_path=None,
        use_last_fc=False,
        bfm_folder="./checkpoints/BFM_Fitting/",
        bfm_model="BFM_model_front.mat",
        focal=1015.0,
        center=112.0,
        camera_d=10.0,
        z_near=5.0,
        z_far=15.0,
    )