Spaces:
Paused
Paused
File size: 6,221 Bytes
04c1e71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import torch
import torch.nn.functional as F
from torch import nn
from src.audio2pose_models.res_unet import ResUnet
def class2onehot(idx, class_num):
assert torch.max(idx).item() < class_num
onehot = torch.zeros(idx.size(0), class_num).to(idx.device)
onehot.scatter_(1, idx, 1)
return onehot
class CVAE(nn.Module):
def __init__(self, cfg):
super().__init__()
encoder_layer_sizes = cfg.MODEL.CVAE.ENCODER_LAYER_SIZES
decoder_layer_sizes = cfg.MODEL.CVAE.DECODER_LAYER_SIZES
latent_size = cfg.MODEL.CVAE.LATENT_SIZE
num_classes = cfg.DATASET.NUM_CLASSES
audio_emb_in_size = cfg.MODEL.CVAE.AUDIO_EMB_IN_SIZE
audio_emb_out_size = cfg.MODEL.CVAE.AUDIO_EMB_OUT_SIZE
seq_len = cfg.MODEL.CVAE.SEQ_LEN
self.latent_size = latent_size
self.encoder = ENCODER(encoder_layer_sizes, latent_size, num_classes,
audio_emb_in_size, audio_emb_out_size, seq_len)
self.decoder = DECODER(decoder_layer_sizes, latent_size, num_classes,
audio_emb_in_size, audio_emb_out_size, seq_len)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, batch):
batch = self.encoder(batch)
mu = batch['mu']
logvar = batch['logvar']
z = self.reparameterize(mu, logvar)
batch['z'] = z
return self.decoder(batch)
def test(self, batch):
'''
class_id = batch['class']
z = torch.randn([class_id.size(0), self.latent_size]).to(class_id.device)
batch['z'] = z
'''
return self.decoder(batch)
class ENCODER(nn.Module):
def __init__(self, layer_sizes, latent_size, num_classes,
audio_emb_in_size, audio_emb_out_size, seq_len):
super().__init__()
self.resunet = ResUnet()
self.num_classes = num_classes
self.seq_len = seq_len
self.MLP = nn.Sequential()
layer_sizes[0] += latent_size + seq_len*audio_emb_out_size + 6
for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
self.MLP.add_module(
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
self.linear_means = nn.Linear(layer_sizes[-1], latent_size)
self.linear_logvar = nn.Linear(layer_sizes[-1], latent_size)
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
def forward(self, batch):
class_id = batch['class']
pose_motion_gt = batch['pose_motion_gt'] #bs seq_len 6
ref = batch['ref'] #bs 6
bs = pose_motion_gt.shape[0]
audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size
#pose encode
pose_emb = self.resunet(pose_motion_gt.unsqueeze(1)) #bs 1 seq_len 6
pose_emb = pose_emb.reshape(bs, -1) #bs seq_len*6
#audio mapping
print(audio_in.shape)
audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size
audio_out = audio_out.reshape(bs, -1)
class_bias = self.classbias[class_id] #bs latent_size
x_in = torch.cat([ref, pose_emb, audio_out, class_bias], dim=-1) #bs seq_len*(audio_emb_out_size+6)+latent_size
x_out = self.MLP(x_in)
mu = self.linear_means(x_out)
logvar = self.linear_means(x_out) #bs latent_size
batch.update({'mu':mu, 'logvar':logvar})
return batch
class DECODER(nn.Module):
def __init__(self, layer_sizes, latent_size, num_classes,
audio_emb_in_size, audio_emb_out_size, seq_len):
super().__init__()
self.resunet = ResUnet()
self.num_classes = num_classes
self.seq_len = seq_len
self.MLP = nn.Sequential()
input_size = latent_size + seq_len*audio_emb_out_size + 6
for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1], layer_sizes)):
self.MLP.add_module(
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
if i+1 < len(layer_sizes):
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
else:
self.MLP.add_module(name="sigmoid", module=nn.Sigmoid())
self.pose_linear = nn.Linear(6, 6)
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
def forward(self, batch):
z = batch['z'] #bs latent_size
bs = z.shape[0]
class_id = batch['class']
ref = batch['ref'] #bs 6
audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size
#print('audio_in: ', audio_in[:, :, :10])
audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size
#print('audio_out: ', audio_out[:, :, :10])
audio_out = audio_out.reshape([bs, -1]) # bs seq_len*audio_emb_out_size
class_bias = self.classbias[class_id] #bs latent_size
z = z + class_bias
x_in = torch.cat([ref, z, audio_out], dim=-1)
x_out = self.MLP(x_in) # bs layer_sizes[-1]
x_out = x_out.reshape((bs, self.seq_len, -1))
#print('x_out: ', x_out)
pose_emb = self.resunet(x_out.unsqueeze(1)) #bs 1 seq_len 6
pose_motion_pred = self.pose_linear(pose_emb.squeeze(1)) #bs seq_len 6
batch.update({'pose_motion_pred':pose_motion_pred})
return batch
|