File size: 3,583 Bytes
04c1e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""Dataset class template



This module provides a template for users to implement custom datasets.

You can specify '--dataset_mode template' to use this dataset.

The class name should be consistent with both the filename and its dataset_mode option.

The filename should be <dataset_mode>_dataset.py

The class name should be <Dataset_mode>Dataset.py

You need to implement the following functions:

    -- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options.

    -- <__init__>: Initialize this dataset class.

    -- <__getitem__>: Return a data point and its metadata information.

    -- <__len__>: Return the number of images.

"""
from data.base_dataset import BaseDataset, get_transform
# from data.image_folder import make_dataset
# from PIL import Image


class TemplateDataset(BaseDataset):
    """A template dataset class for you to implement custom datasets."""
    @staticmethod
    def modify_commandline_options(parser, is_train):
        """Add new dataset-specific options, and rewrite default values for existing options.



        Parameters:

            parser          -- original option parser

            is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.



        Returns:

            the modified parser.

        """
        parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option')
        parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0)  # specify dataset-specific default values
        return parser

    def __init__(self, opt):
        """Initialize this dataset class.



        Parameters:

            opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions



        A few things can be done here.

        - save the options (have been done in BaseDataset)

        - get image paths and meta information of the dataset.

        - define the image transformation.

        """
        # save the option and dataset root
        BaseDataset.__init__(self, opt)
        # get the image paths of your dataset;
        self.image_paths = []  # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root
        # define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function
        self.transform = get_transform(opt)

    def __getitem__(self, index):
        """Return a data point and its metadata information.



        Parameters:

            index -- a random integer for data indexing



        Returns:

            a dictionary of data with their names. It usually contains the data itself and its metadata information.



        Step 1: get a random image path: e.g., path = self.image_paths[index]

        Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB').

        Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image)

        Step 4: return a data point as a dictionary.

        """
        path = 'temp'    # needs to be a string
        data_A = None    # needs to be a tensor
        data_B = None    # needs to be a tensor
        return {'data_A': data_A, 'data_B': data_B, 'path': path}

    def __len__(self):
        """Return the total number of images."""
        return len(self.image_paths)