File size: 6,177 Bytes
1682f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569822
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import numpy as np

######### face enhancement
from videoretalking.third_part.GPEN.face_parse.face_parsing import FaceParse
from videoretalking.third_part.GPEN.face_detect.retinaface_detection import RetinaFaceDetection
from videoretalking.third_part.GPEN.face_parse.face_parsing import FaceParse
from videoretalking.third_part.GPEN.face_model.face_gan import FaceGAN
# from sr_model.real_esrnet import RealESRNet
from align_faces import warp_and_crop_face, get_reference_facial_points
from utils.inference_utils import Laplacian_Pyramid_Blending_with_mask

class FaceEnhancement(object):
    def __init__(self, base_dir='./', size=512, model=None, use_sr=True, sr_model=None, channel_multiplier=2, narrow=1, device='cuda'):
        self.facedetector = RetinaFaceDetection(base_dir, device)
        self.facegan = FaceGAN(base_dir, size, model, channel_multiplier, narrow, device=device)
        # self.srmodel =  RealESRNet(base_dir, sr_model, device=device)
        self.srmodel=None
        self.faceparser = FaceParse(base_dir, device=device)
        self.use_sr = use_sr
        self.size = size
        self.threshold = 0.9

        # the mask for pasting restored faces back
        self.mask = np.zeros((512, 512), np.float32)
        cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA)
        self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
        self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)

        self.kernel = np.array((
                [0.0625, 0.125, 0.0625],
                [0.125, 0.25, 0.125],
                [0.0625, 0.125, 0.0625]), dtype="float32")

        # get the reference 5 landmarks position in the crop settings
        default_square = True
        inner_padding_factor = 0.25
        outer_padding = (0, 0)
        self.reference_5pts = get_reference_facial_points(
                (self.size, self.size), inner_padding_factor, outer_padding, default_square)

    def mask_postprocess(self, mask, thres=20):
        mask[:thres, :] = 0; mask[-thres:, :] = 0
        mask[:, :thres] = 0; mask[:, -thres:] = 0        
        mask = cv2.GaussianBlur(mask, (101, 101), 11)
        mask = cv2.GaussianBlur(mask, (101, 101), 11)
        return mask.astype(np.float32)
    
    def process(self, img, ori_img, bbox=None, face_enhance=True, possion_blending=False):
        if self.use_sr:
            img_sr = self.srmodel.process(img)
            if img_sr is not None:
                img = cv2.resize(img, img_sr.shape[:2][::-1])

        facebs, landms = self.facedetector.detect(img.copy())

        orig_faces, enhanced_faces = [], []
        height, width = img.shape[:2]
        full_mask = np.zeros((height, width), dtype=np.float32)
        full_img = np.zeros(ori_img.shape, dtype=np.uint8)

        for i, (faceb, facial5points) in enumerate(zip(facebs, landms)):
            if faceb[4]<self.threshold: continue
            fh, fw = (faceb[3]-faceb[1]), (faceb[2]-faceb[0])

            facial5points = np.reshape(facial5points, (2, 5))

            of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.size, self.size))

            # enhance the face
            if face_enhance:
                ef = self.facegan.process(of)
            else:
                ef = of
                    
            orig_faces.append(of)
            enhanced_faces.append(ef)
            
            # print(ef.shape)
            # tmp_mask = self.mask
            '''
            0: 'background' 1: 'skin'   2: 'nose'
            3: 'eye_g'  4: 'l_eye'  5: 'r_eye'
            6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
            9: 'r_ear'  10: 'mouth' 11: 'u_lip'
            12: 'l_lip' 13: 'hair'  14: 'hat'
            15: 'ear_r' 16: 'neck_l'    17: 'neck'
            18: 'cloth'
            '''

            # no ear, no neck, no hair&hat,  only face region
            mm = [0, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0]
            mask_sharp = self.faceparser.process(ef, mm)[0]/255.
            tmp_mask = self.mask_postprocess(mask_sharp)
            tmp_mask = cv2.resize(tmp_mask, ef.shape[:2])
            mask_sharp = cv2.resize(mask_sharp, ef.shape[:2])

            tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3)
            mask_sharp = cv2.warpAffine(mask_sharp, tfm_inv, (width, height), flags=3)

            if min(fh, fw)<100: # gaussian filter for small faces
                ef = cv2.filter2D(ef, -1, self.kernel)
            
            if face_enhance:
                tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3)
            else:
                tmp_img = cv2.warpAffine(of, tfm_inv, (width, height), flags=3)

            mask = tmp_mask - full_mask
            full_mask[np.where(mask>0)] = tmp_mask[np.where(mask>0)]
            full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)]

        mask_sharp = cv2.GaussianBlur(mask_sharp, (0,0), sigmaX=1, sigmaY=1, borderType = cv2.BORDER_DEFAULT)

        full_mask = full_mask[:, :, np.newaxis]
        mask_sharp = mask_sharp[:, :, np.newaxis]

        if self.use_sr and img_sr is not None:
            img = cv2.convertScaleAbs(img_sr*(1-full_mask) + full_img*full_mask)
        
        elif possion_blending is True:
            if bbox is not None:
                y1, y2, x1, x2 = bbox
                mask_bbox = np.zeros_like(mask_sharp)
                mask_bbox[y1:y2 - 5, x1:x2] = 1
                full_img, ori_img, full_mask = [cv2.resize(x,(512,512)) for x in (full_img, ori_img, np.float32(mask_sharp * mask_bbox))]
            else:
                full_img, ori_img, full_mask = [cv2.resize(x,(512,512)) for x in (full_img, ori_img, full_mask)]
            
            img = Laplacian_Pyramid_Blending_with_mask(full_img, ori_img, full_mask, 6)
            img = np.clip(img, 0 ,255)
            img = np.uint8(cv2.resize(img, (width, height)))

        else:
            img = cv2.convertScaleAbs(ori_img*(1-full_mask) + full_img*full_mask)
            img = cv2.convertScaleAbs(ori_img*(1-mask_sharp) + img*mask_sharp)

        return img, orig_faces, enhanced_faces