File size: 8,805 Bytes
6764da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from time import  strftime
import os, sys, time
from argparse import ArgumentParser

from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff  
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data

def main(args):
    #torch.backends.cudnn.enabled = False

    pic_path = args.source_image
    audio_path = args.driven_audio
    save_dir = os.path.join(args.result_dir, strftime("%Y_%m_%d_%H.%M.%S"))
    os.makedirs(save_dir, exist_ok=True)
    pose_style = args.pose_style
    device = args.device
    batch_size = args.batch_size
    input_yaw_list = args.input_yaw
    input_pitch_list = args.input_pitch
    input_roll_list = args.input_roll
    ref_eyeblink = args.ref_eyeblink
    ref_pose = args.ref_pose

    current_code_path = sys.argv[0]
    current_root_path = os.path.split(current_code_path)[0]

    os.environ['TORCH_HOME']=os.path.join(current_root_path, args.checkpoint_dir)

    path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
    path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
    dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
    wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')

    audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
    audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
    
    audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
    audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')

    free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')

    if args.preprocess == 'full':
        mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
    else:
        mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')

    #init model
    print(path_of_net_recon_model)
    preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)

    print(audio2pose_checkpoint)
    print(audio2exp_checkpoint)
    audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, 
                                audio2exp_checkpoint, audio2exp_yaml_path, 
                                wav2lip_checkpoint, device)
    
    print(free_view_checkpoint)
    print(mapping_checkpoint)
    animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, 
                                            facerender_yaml_path, device)

    #crop image and extract 3dmm from image
    first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
    os.makedirs(first_frame_dir, exist_ok=True)
    print('3DMM Extraction for source image')
    first_coeff_path, crop_pic_path, crop_info =  preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
    if first_coeff_path is None:
        print("Can't get the coeffs of the input")
        return

    if ref_eyeblink is not None:
        ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
        ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
        os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
        print('3DMM Extraction for the reference video providing eye blinking')
        ref_eyeblink_coeff_path, _, _ =  preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
    else:
        ref_eyeblink_coeff_path=None

    if ref_pose is not None:
        if ref_pose == ref_eyeblink: 
            ref_pose_coeff_path = ref_eyeblink_coeff_path
        else:
            ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
            ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
            os.makedirs(ref_pose_frame_dir, exist_ok=True)
            print('3DMM Extraction for the reference video providing pose')
            ref_pose_coeff_path, _, _ =  preprocess_model.generate(ref_pose, ref_pose_frame_dir)
    else:
        ref_pose_coeff_path=None

    #audio2ceoff
    batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
    coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)

    # 3dface render
    if args.face3dvis:
        from src.face3d.visualize import gen_composed_video
        gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
    
    #coeff2video
    data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, 
                                batch_size, input_yaw_list, input_pitch_list, input_roll_list,
                                expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
    
    animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
                                enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
    
if __name__ == '__main__':

    parser = ArgumentParser()  
    parser.add_argument("--driven_audio", default='./examples/driven_audio/bus_chinese.wav', help="path to driven audio")
    parser.add_argument("--source_image", default='./examples/source_image/full_body_2.png', help="path to source image")
    parser.add_argument("--ref_eyeblink", default=None, help="path to reference video providing eye blinking")
    parser.add_argument("--ref_pose", default=None, help="path to reference video providing pose")
    parser.add_argument("--checkpoint_dir", default='./checkpoints', help="path to output")
    parser.add_argument("--result_dir", default='./results', help="path to output")
    parser.add_argument("--pose_style", type=int, default=0,  help="input pose style from [0, 46)")
    parser.add_argument("--batch_size", type=int, default=2,  help="the batch size of facerender")
    parser.add_argument("--expression_scale", type=float, default=1.,  help="the batch size of facerender")
    parser.add_argument('--input_yaw', nargs='+', type=int, default=None, help="the input yaw degree of the user ")
    parser.add_argument('--input_pitch', nargs='+', type=int, default=None, help="the input pitch degree of the user")
    parser.add_argument('--input_roll', nargs='+', type=int, default=None, help="the input roll degree of the user")
    parser.add_argument('--enhancer',  type=str, default=None, help="Face enhancer, [gfpgan, RestoreFormer]")
    parser.add_argument('--background_enhancer',  type=str, default=None, help="background enhancer, [realesrgan]")
    parser.add_argument("--cpu", dest="cpu", action="store_true") 
    parser.add_argument("--face3dvis", action="store_true", help="generate 3d face and 3d landmarks") 
    parser.add_argument("--still", action="store_true", help="can crop back to the original videos for the full body aniamtion") 
    parser.add_argument("--preprocess", default='crop', choices=['crop', 'resize', 'full'], help="how to preprocess the images" ) 

    # net structure and parameters
    parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='useless')
    parser.add_argument('--init_path', type=str, default=None, help='Useless')
    parser.add_argument('--use_last_fc',default=False, help='zero initialize the last fc')
    parser.add_argument('--bfm_folder', type=str, default='./checkpoints/BFM_Fitting/')
    parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model')

    # default renderer parameters
    parser.add_argument('--focal', type=float, default=1015.)
    parser.add_argument('--center', type=float, default=112.)
    parser.add_argument('--camera_d', type=float, default=10.)
    parser.add_argument('--z_near', type=float, default=5.)
    parser.add_argument('--z_far', type=float, default=15.)

    args = parser.parse_args()

    if torch.cuda.is_available() and not args.cpu:
        args.device = "cuda"
    else:
        args.device = "cpu"

    main(args)