Spaces:
Paused
Paused
File size: 22,386 Bytes
780dcf9 5b1ae50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm
from videoretalking.models.ffc import FFC
from basicsr.archs.arch_util import default_init_weights
class Conv2d(nn.Module):
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.Conv2d(cin, cout, kernel_size, stride, padding),
nn.BatchNorm2d(cout)
)
self.act = nn.ReLU()
self.residual = residual
def forward(self, x):
out = self.conv_block(x)
if self.residual:
out += x
return self.act(out)
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, mode='down'):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
if mode == 'down':
self.scale_factor = 0.5
elif mode == 'up':
self.scale_factor = 2
def forward(self, x):
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
# upsample/downsample
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
# skip
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
skip = self.skip(x)
out = out + skip
return out
class LayerNorm2d(nn.Module):
def __init__(self, n_out, affine=True):
super(LayerNorm2d, self).__init__()
self.n_out = n_out
self.affine = affine
if self.affine:
self.weight = nn.Parameter(torch.ones(n_out, 1, 1))
self.bias = nn.Parameter(torch.zeros(n_out, 1, 1))
def forward(self, x):
normalized_shape = x.size()[1:]
if self.affine:
return F.layer_norm(x, normalized_shape, \
self.weight.expand(normalized_shape),
self.bias.expand(normalized_shape))
else:
return F.layer_norm(x, normalized_shape)
def spectral_norm(module, use_spect=True):
if use_spect:
return SpectralNorm(module)
else:
return module
class FirstBlock2d(nn.Module):
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(FirstBlock2d, self).__init__()
kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3}
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
if type(norm_layer) == type(None):
self.model = nn.Sequential(conv, nonlinearity)
else:
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
def forward(self, x):
out = self.model(x)
return out
class DownBlock2d(nn.Module):
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(DownBlock2d, self).__init__()
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
pool = nn.AvgPool2d(kernel_size=(2, 2))
if type(norm_layer) == type(None):
self.model = nn.Sequential(conv, nonlinearity, pool)
else:
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool)
def forward(self, x):
out = self.model(x)
return out
class UpBlock2d(nn.Module):
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(UpBlock2d, self).__init__()
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
if type(norm_layer) == type(None):
self.model = nn.Sequential(conv, nonlinearity)
else:
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
def forward(self, x):
out = self.model(F.interpolate(x, scale_factor=2))
return out
class ADAIN(nn.Module):
def __init__(self, norm_nc, feature_nc):
super().__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
nhidden = 128
use_bias=True
self.mlp_shared = nn.Sequential(
nn.Linear(feature_nc, nhidden, bias=use_bias),
nn.ReLU()
)
self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias)
self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias)
def forward(self, x, feature):
# Part 1. generate parameter-free normalized activations
normalized = self.param_free_norm(x)
# Part 2. produce scaling and bias conditioned on feature
feature = feature.view(feature.size(0), -1)
actv = self.mlp_shared(feature)
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
# apply scale and bias
gamma = gamma.view(*gamma.size()[:2], 1,1)
beta = beta.view(*beta.size()[:2], 1,1)
out = normalized * (1 + gamma) + beta
return out
class FineADAINResBlock2d(nn.Module):
"""
Define an Residual block for different types
"""
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(FineADAINResBlock2d, self).__init__()
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
self.norm1 = ADAIN(input_nc, feature_nc)
self.norm2 = ADAIN(input_nc, feature_nc)
self.actvn = nonlinearity
def forward(self, x, z):
dx = self.actvn(self.norm1(self.conv1(x), z))
dx = self.norm2(self.conv2(x), z)
out = dx + x
return out
class FineADAINResBlocks(nn.Module):
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(FineADAINResBlocks, self).__init__()
self.num_block = num_block
for i in range(num_block):
model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
setattr(self, 'res'+str(i), model)
def forward(self, x, z):
for i in range(self.num_block):
model = getattr(self, 'res'+str(i))
x = model(x, z)
return x
class ADAINEncoderBlock(nn.Module):
def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(ADAINEncoderBlock, self).__init__()
kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1}
kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1}
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect)
self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect)
self.norm_0 = ADAIN(input_nc, feature_nc)
self.norm_1 = ADAIN(output_nc, feature_nc)
self.actvn = nonlinearity
def forward(self, x, z):
x = self.conv_0(self.actvn(self.norm_0(x, z)))
x = self.conv_1(self.actvn(self.norm_1(x, z)))
return x
class ADAINDecoderBlock(nn.Module):
def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(ADAINDecoderBlock, self).__init__()
# Attributes
self.actvn = nonlinearity
hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc
kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1}
if use_transpose:
kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1}
else:
kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1}
# create conv layers
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect)
if use_transpose:
self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect)
self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect)
else:
self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect),
nn.Upsample(scale_factor=2))
self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect),
nn.Upsample(scale_factor=2))
# define normalization layers
self.norm_0 = ADAIN(input_nc, feature_nc)
self.norm_1 = ADAIN(hidden_nc, feature_nc)
self.norm_s = ADAIN(input_nc, feature_nc)
def forward(self, x, z):
x_s = self.shortcut(x, z)
dx = self.conv_0(self.actvn(self.norm_0(x, z)))
dx = self.conv_1(self.actvn(self.norm_1(dx, z)))
out = x_s + dx
return out
def shortcut(self, x, z):
x_s = self.conv_s(self.actvn(self.norm_s(x, z)))
return x_s
class FineEncoder(nn.Module):
"""docstring for Encoder"""
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(FineEncoder, self).__init__()
self.layers = layers
self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
for i in range(layers):
in_channels = min(ngf*(2**i), img_f)
out_channels = min(ngf*(2**(i+1)), img_f)
model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
setattr(self, 'down' + str(i), model)
self.output_nc = out_channels
def forward(self, x):
x = self.first(x)
out=[x]
for i in range(self.layers):
model = getattr(self, 'down'+str(i))
x = model(x)
out.append(x)
return out
class FineDecoder(nn.Module):
"""docstring for FineDecoder"""
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(FineDecoder, self).__init__()
self.layers = layers
for i in range(layers)[::-1]:
in_channels = min(ngf*(2**(i+1)), img_f)
out_channels = min(ngf*(2**i), img_f)
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
setattr(self, 'up' + str(i), up)
setattr(self, 'res' + str(i), res)
setattr(self, 'jump' + str(i), jump)
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh')
self.output_nc = out_channels
def forward(self, x, z):
out = x.pop()
for i in range(self.layers)[::-1]:
res_model = getattr(self, 'res' + str(i))
up_model = getattr(self, 'up' + str(i))
jump_model = getattr(self, 'jump' + str(i))
out = res_model(out, z)
out = up_model(out)
out = jump_model(x.pop()) + out
out_image = self.final(out)
return out_image
class ADAINEncoder(nn.Module):
def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(ADAINEncoder, self).__init__()
self.layers = layers
self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3)
for i in range(layers):
in_channels = min(ngf * (2**i), img_f)
out_channels = min(ngf *(2**(i+1)), img_f)
model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect)
setattr(self, 'encoder' + str(i), model)
self.output_nc = out_channels
def forward(self, x, z):
out = self.input_layer(x)
out_list = [out]
for i in range(self.layers):
model = getattr(self, 'encoder' + str(i))
out = model(out, z)
out_list.append(out)
return out_list
class ADAINDecoder(nn.Module):
"""docstring for ADAINDecoder"""
def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True,
nonlinearity=nn.LeakyReLU(), use_spect=False):
super(ADAINDecoder, self).__init__()
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.skip_connect = skip_connect
use_transpose = True
for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]:
in_channels = min(ngf * (2**(i+1)), img_f)
in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels
out_channels = min(ngf * (2**i), img_f)
model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect)
setattr(self, 'decoder' + str(i), model)
self.output_nc = out_channels*2 if self.skip_connect else out_channels
def forward(self, x, z):
out = x.pop() if self.skip_connect else x
for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]:
model = getattr(self, 'decoder' + str(i))
out = model(out, z)
out = torch.cat([out, x.pop()], 1) if self.skip_connect else out
return out
class ADAINHourglass(nn.Module):
def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect):
super(ADAINHourglass, self).__init__()
self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect)
self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect)
self.output_nc = self.decoder.output_nc
def forward(self, x, z):
return self.decoder(self.encoder(x, z), z)
class FineADAINLama(nn.Module):
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(FineADAINLama, self).__init__()
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
self.actvn = nonlinearity
ratio_gin = 0.75
ratio_gout = 0.75
self.ffc = FFC(input_nc, input_nc, 3,
ratio_gin, ratio_gout, 1, 1, 1,
1, False, False, padding_type='reflect')
global_channels = int(input_nc * ratio_gout)
self.bn_l = ADAIN(input_nc - global_channels, feature_nc)
self.bn_g = ADAIN(global_channels, feature_nc)
def forward(self, x, z):
x_l, x_g = self.ffc(x)
x_l = self.actvn(self.bn_l(x_l,z))
x_g = self.actvn(self.bn_g(x_g,z))
return x_l, x_g
class FFCResnetBlock(nn.Module):
def __init__(self, dim, feature_dim, padding_type='reflect', norm_layer=BatchNorm2d, activation_layer=nn.ReLU, dilation=1,
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
super().__init__()
self.conv1 = FineADAINLama(dim, feature_dim, **conv_kwargs)
self.conv2 = FineADAINLama(dim, feature_dim, **conv_kwargs)
self.inline = True
def forward(self, x, z):
if self.inline:
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
else:
x_l, x_g = x if type(x) is tuple else (x, 0)
id_l, id_g = x_l, x_g
x_l, x_g = self.conv1((x_l, x_g), z)
x_l, x_g = self.conv2((x_l, x_g), z)
x_l, x_g = id_l + x_l, id_g + x_g
out = x_l, x_g
if self.inline:
out = torch.cat(out, dim=1)
return out
class FFCADAINResBlocks(nn.Module):
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(FFCADAINResBlocks, self).__init__()
self.num_block = num_block
for i in range(num_block):
model = FFCResnetBlock(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
setattr(self, 'res'+str(i), model)
def forward(self, x, z):
for i in range(self.num_block):
model = getattr(self, 'res'+str(i))
x = model(x, z)
return x
class Jump(nn.Module):
def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
super(Jump, self).__init__()
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
if type(norm_layer) == type(None):
self.model = nn.Sequential(conv, nonlinearity)
else:
self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity)
def forward(self, x):
out = self.model(x)
return out
class FinalBlock2d(nn.Module):
def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'):
super(FinalBlock2d, self).__init__()
kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3}
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
if tanh_or_sigmoid == 'sigmoid':
out_nonlinearity = nn.Sigmoid()
else:
out_nonlinearity = nn.Tanh()
self.model = nn.Sequential(conv, out_nonlinearity)
def forward(self, x):
out = self.model(x)
return out
class ModulatedConv2d(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
eps=1e-8):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
# modulation inside each modulated conv
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
# initialization
default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
self.weight = nn.Parameter(
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
math.sqrt(in_channels * kernel_size**2))
self.padding = kernel_size // 2
def forward(self, x, style):
b, c, h, w = x.shape
style = self.modulation(style).view(b, 1, c, 1, 1)
weight = self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
# upsample or downsample if necessary
if self.sample_mode == 'upsample':
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
elif self.sample_mode == 'downsample':
x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
b, c, h, w = x.shape
x = x.view(1, b * c, h, w)
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
class StyleConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
super(StyleConv, self).__init__()
self.modulated_conv = ModulatedConv2d(
in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x, style, noise=None):
# modulate
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
# noise injection
if noise is None:
b, _, h, w = out.shape
noise = out.new_empty(b, 1, h, w).normal_()
out = out + self.weight * noise
# add bias
out = out + self.bias
# activation
out = self.activate(out)
return out
class ToRGB(nn.Module):
def __init__(self, in_channels, num_style_feat, upsample=True):
super(ToRGB, self).__init__()
self.upsample = upsample
self.modulated_conv = ModulatedConv2d(
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
out = self.modulated_conv(x, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
out = out + skip
return out |